| | |
| | | |
| | | #define FRAMES 3 |
| | | |
| | | struct detector_gpu_t{ |
| | | #ifdef GPU |
| | | void check_cuda(cudaError_t status) { |
| | | if (status != cudaSuccess) { |
| | | const char *s = cudaGetErrorString(status); |
| | | printf("CUDA Error Prev: %s\n", s); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | struct detector_gpu_t { |
| | | float **probs; |
| | | box *boxes; |
| | | network net; |
| | |
| | | unsigned int *track_id; |
| | | }; |
| | | |
| | | #ifdef OPENCV |
| | | cv::Scalar obj_id_to_color(int obj_id) |
| | | { |
| | | int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; |
| | | int const offset = obj_id * 123457 % 6; |
| | | int const color_scale = 150 + (obj_id * 123457) % 100; |
| | | cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]); |
| | | color *= color_scale; |
| | | return color; |
| | | } |
| | | #endif |
| | | |
| | | YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id) |
| | | { |
| | | wait_stream = 0; |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | check_cuda( cudaGetDevice(&old_gpu_index) ); |
| | | #endif |
| | | |
| | | detector_gpu_ptr = std::make_shared<detector_gpu_t>(); |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | |
| | | #ifdef GPU |
| | | cudaSetDevice(gpu_id); |
| | | check_cuda( cudaSetDevice(gpu_id) ); |
| | | printf(" Used GPU %d \n", gpu_id); |
| | | #endif |
| | | network &net = detector_gpu.net; |
| | | net.gpu_index = gpu_id; |
| | |
| | | for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1; |
| | | |
| | | #ifdef GPU |
| | | cudaSetDevice(old_gpu_index); |
| | | check_cuda( cudaSetDevice(old_gpu_index) ); |
| | | #endif |
| | | } |
| | | |
| | | |
| | | YOLODLL_API Detector::~Detector() |
| | | { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | layer l = detector_gpu.net.layers[detector_gpu.net.n - 1]; |
| | | |
| | | free(detector_gpu.track_id); |
| | |
| | | } |
| | | |
| | | YOLODLL_API int Detector::get_net_width() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.w; |
| | | } |
| | | YOLODLL_API int Detector::get_net_height() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.h; |
| | | } |
| | | |
| | |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean) |
| | | { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | network &net = detector_gpu.net; |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | |
| | | YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, |
| | | int const frames_story, int const max_dist) |
| | | { |
| | | detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | |
| | | bool prev_track_id_present = false; |
| | | for (auto &i : prev_bbox_vec_deque) |