| | |
| | | |
| | | #define FRAMES 3 |
| | | |
| | | struct detector_gpu_t{ |
| | | float **probs; |
| | | box *boxes; |
| | | //static Detector* detector = NULL; |
| | | static std::unique_ptr<Detector> detector; |
| | | |
| | | int init(const char *configurationFilename, const char *weightsFilename, int gpu) |
| | | { |
| | | detector.reset(new Detector(configurationFilename, weightsFilename, gpu)); |
| | | return 1; |
| | | } |
| | | |
| | | int detect_image(const char *filename, bbox_t_container &container) |
| | | { |
| | | std::vector<bbox_t> detection = detector->detect(filename); |
| | | for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i) |
| | | container.candidates[i] = detection[i]; |
| | | return detection.size(); |
| | | } |
| | | |
| | | int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container) { |
| | | #ifdef OPENCV |
| | | std::vector<char> vdata(data, data + data_length); |
| | | cv::Mat image = imdecode(cv::Mat(vdata), 1); |
| | | |
| | | std::vector<bbox_t> detection = detector->detect(image); |
| | | for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i) |
| | | container.candidates[i] = detection[i]; |
| | | return detection.size(); |
| | | #else |
| | | return -1; |
| | | #endif // OPENCV |
| | | } |
| | | |
| | | int dispose() { |
| | | //if (detector != NULL) delete detector; |
| | | //detector = NULL; |
| | | detector.reset(); |
| | | return 1; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void check_cuda(cudaError_t status) { |
| | | if (status != cudaSuccess) { |
| | | const char *s = cudaGetErrorString(status); |
| | | printf("CUDA Error Prev: %s\n", s); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | struct detector_gpu_t { |
| | | network net; |
| | | image images[FRAMES]; |
| | | float *avg; |
| | |
| | | unsigned int *track_id; |
| | | }; |
| | | |
| | | |
| | | YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) |
| | | YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id) |
| | | { |
| | | wait_stream = 0; |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | check_cuda( cudaGetDevice(&old_gpu_index) ); |
| | | #endif |
| | | |
| | | detector_gpu_ptr = std::make_shared<detector_gpu_t>(); |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | |
| | | #ifdef GPU |
| | | cudaSetDevice(gpu_id); |
| | | //check_cuda( cudaSetDevice(cur_gpu_id) ); |
| | | cuda_set_device(cur_gpu_id); |
| | | printf(" Used GPU %d \n", cur_gpu_id); |
| | | #endif |
| | | network &net = detector_gpu.net; |
| | | net.gpu_index = gpu_id; |
| | | net.gpu_index = cur_gpu_id; |
| | | //gpu_index = i; |
| | | |
| | | char *cfgfile = const_cast<char *>(cfg_filename.data()); |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | net.gpu_index = gpu_id; |
| | | net.gpu_index = cur_gpu_id; |
| | | fuse_conv_batchnorm(net); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int j; |
| | |
| | | for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float)); |
| | | for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3); |
| | | |
| | | detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box)); |
| | | detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float)); |
| | | |
| | | detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int)); |
| | | for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1; |
| | | |
| | | #ifdef GPU |
| | | cudaSetDevice(old_gpu_index); |
| | | check_cuda( cudaSetDevice(old_gpu_index) ); |
| | | #endif |
| | | } |
| | | |
| | | |
| | | YOLODLL_API Detector::~Detector() |
| | | { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | layer l = detector_gpu.net.layers[detector_gpu.net.n - 1]; |
| | | |
| | | free(detector_gpu.track_id); |
| | |
| | | for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]); |
| | | for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data); |
| | | |
| | | for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]); |
| | | free(detector_gpu.boxes); |
| | | free(detector_gpu.probs); |
| | | |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | cudaSetDevice(detector_gpu.net.gpu_index); |
| | | cuda_set_device(detector_gpu.net.gpu_index); |
| | | #endif |
| | | |
| | | free_network(detector_gpu.net); |
| | |
| | | } |
| | | |
| | | YOLODLL_API int Detector::get_net_width() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.w; |
| | | } |
| | | YOLODLL_API int Detector::get_net_height() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.h; |
| | | } |
| | | YOLODLL_API int Detector::get_net_color_depth() const { |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.c; |
| | | } |
| | | |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean) |
| | |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean) |
| | | { |
| | | |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | network &net = detector_gpu.net; |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | cudaSetDevice(net.gpu_index); |
| | | if(cur_gpu_id != old_gpu_index) |
| | | cudaSetDevice(net.gpu_index); |
| | | |
| | | net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait |
| | | #endif |
| | | //std::cout << "net.gpu_index = " << net.gpu_index << std::endl; |
| | | |
| | |
| | | l.output = detector_gpu.avg; |
| | | detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES; |
| | | } |
| | | //get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
| | | //if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
| | | |
| | | get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
| | | if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
| | | //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | int nboxes = 0; |
| | | int letterbox = 0; |
| | | float hier_thresh = 0.5; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | |
| | | std::vector<bbox_t> bbox_vec; |
| | | |
| | | for (size_t i = 0; i < (l.w*l.h*l.n); ++i) { |
| | | box b = detector_gpu.boxes[i]; |
| | | int const obj_id = max_index(detector_gpu.probs[i], l.classes); |
| | | float const prob = detector_gpu.probs[i][obj_id]; |
| | | for (size_t i = 0; i < nboxes; ++i) { |
| | | box b = dets[i].bbox; |
| | | int const obj_id = max_index(dets[i].prob, l.classes); |
| | | float const prob = dets[i].prob[obj_id]; |
| | | |
| | | if (prob > thresh) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | if(sized.data) |
| | | free(sized.data); |
| | | |
| | | #ifdef GPU |
| | | cudaSetDevice(old_gpu_index); |
| | | if (cur_gpu_id != old_gpu_index) |
| | | cudaSetDevice(old_gpu_index); |
| | | #endif |
| | | |
| | | return bbox_vec; |
| | | } |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story) |
| | | YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, |
| | | int const frames_story, int const max_dist) |
| | | { |
| | | detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | |
| | | bool prev_track_id_present = false; |
| | | for (auto &i : prev_bbox_vec_deque) |
| | |
| | | float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2); |
| | | float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2); |
| | | unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff); |
| | | if (cur_dist < 100 && (k.track_id == 0 || dist_vec[m] > cur_dist)) { |
| | | if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) { |
| | | dist_vec[m] = cur_dist; |
| | | cur_index = m; |
| | | } |
| | |
| | | if (cur_bbox_vec[i].track_id == 0) |
| | | cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++; |
| | | |
| | | prev_bbox_vec_deque.push_front(cur_bbox_vec); |
| | | if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back(); |
| | | if (change_history) { |
| | | prev_bbox_vec_deque.push_front(cur_bbox_vec); |
| | | if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back(); |
| | | } |
| | | |
| | | return cur_bbox_vec; |
| | | } |