| | |
| | | #include "activations.h" |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "box.h" |
| | | #include "cuda.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | int get_detection_layer_locations(detection_layer layer) |
| | | int get_detection_layer_locations(detection_layer l) |
| | | { |
| | | return layer.inputs / (layer.classes+layer.coords+layer.rescore); |
| | | return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness)); |
| | | } |
| | | |
| | | int get_detection_layer_output_size(detection_layer layer) |
| | | int get_detection_layer_output_size(detection_layer l) |
| | | { |
| | | return get_detection_layer_locations(layer)*(layer.classes+layer.coords); |
| | | return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords); |
| | | } |
| | | |
| | | detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore) |
| | | detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness) |
| | | { |
| | | detection_layer *layer = calloc(1, sizeof(detection_layer)); |
| | | |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->classes = classes; |
| | | layer->coords = coords; |
| | | layer->rescore = rescore; |
| | | int outputs = get_detection_layer_output_size(*layer); |
| | | layer->output = calloc(batch*outputs, sizeof(float)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float)); |
| | | detection_layer l = {0}; |
| | | l.type = DETECTION; |
| | | |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.objectness = objectness; |
| | | l.background = background; |
| | | l.joint = joint; |
| | | l.cost = calloc(1, sizeof(float)); |
| | | l.does_cost=1; |
| | | int outputs = get_detection_layer_output_size(l); |
| | | l.outputs = outputs; |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(0, batch*outputs); |
| | | layer->delta_gpu = cuda_make_array(0, batch*outputs); |
| | | l.output_gpu = cuda_make_array(0, batch*outputs); |
| | | l.delta_gpu = cuda_make_array(0, batch*outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Detection Layer\n"); |
| | | srand(0); |
| | | |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, float *in, float *truth) |
| | | void forward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int mask = (!truth || !truth[out_i + layer.classes - 1]); |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]); |
| | | float scale = 1; |
| | | if(layer.rescore) scale = in[in_i++]; |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | layer.output[out_i++] = scale*in[in_i++]; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if(l.objectness){ |
| | | l.output[out_i++] = 1-state.input[in_i++]; |
| | | scale = mask; |
| | | } |
| | | softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes); |
| | | activate_array(layer.output+out_i, layer.coords, SIGMOID); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | layer.output[out_i++] = mask*in[in_i++]; |
| | | else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; |
| | | |
| | | for(j = 0; j < l.classes; ++j){ |
| | | l.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | //printf("%d\n", mask); |
| | | //for(j = 0; j < layer.classes+layer.coords; ++j) printf("%f ", layer.output[i*(layer.classes+layer.coords)+j]); |
| | | //printf ("\n"); |
| | | if(l.objectness){ |
| | | |
| | | }else if(l.background){ |
| | | softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); |
| | | activate_array(state.input+in_i, l.coords, LOGISTIC); |
| | | } |
| | | for(j = 0; j < l.coords; ++j){ |
| | | l.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | float avg_iou = 0; |
| | | int count = 0; |
| | | if(l.does_cost && state.train){ |
| | | *(l.cost) = 0; |
| | | int size = get_detection_layer_output_size(l) * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | int classes = l.objectness+l.classes; |
| | | int offset = i*(classes+l.coords); |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(l.cost) += pow(state.truth[j] - l.output[j], 2); |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | |
| | | box truth; |
| | | truth.x = state.truth[j+0]/7; |
| | | truth.y = state.truth[j+1]/7; |
| | | truth.w = pow(state.truth[j+2], 2); |
| | | truth.h = pow(state.truth[j+3], 2); |
| | | box out; |
| | | out.x = l.output[j+0]/7; |
| | | out.y = l.output[j+1]/7; |
| | | out.w = pow(l.output[j+2], 2); |
| | | out.h = pow(l.output[j+3], 2); |
| | | |
| | | if(!(truth.w*truth.h)) continue; |
| | | float iou = box_iou(out, truth); |
| | | avg_iou += iou; |
| | | ++count; |
| | | dbox delta = diou(out, truth); |
| | | |
| | | l.delta[j+0] = 10 * delta.dx/7; |
| | | l.delta[j+1] = 10 * delta.dy/7; |
| | | l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w); |
| | | l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h); |
| | | |
| | | |
| | | *(l.cost) += pow((1-iou), 2); |
| | | l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]); |
| | | l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); |
| | | l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); |
| | | l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); |
| | | if(l.rescore){ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | if(state.truth[j]) state.truth[j] = iou; |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | } |
| | | } |
| | | printf("Avg IOU: %f\n", avg_iou/count); |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, float *in, float *delta) |
| | | void backward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | float scale = 1; |
| | | float latent_delta = 0; |
| | | if(layer.rescore) scale = in[in_i++]; |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | latent_delta += in[in_i]*layer.delta[out_i]; |
| | | delta[in_i++] = scale*layer.delta[out_i++]; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++]; |
| | | else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | latent_delta += state.input[in_i]*l.delta[out_i]; |
| | | state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | } |
| | | |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | delta[in_i++] = layer.delta[out_i++]; |
| | | |
| | | if (l.objectness) { |
| | | |
| | | }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); |
| | | for(j = 0; j < l.coords; ++j){ |
| | | state.delta[in_i++] = l.delta[out_i++]; |
| | | } |
| | | gradient_array(in + in_i - layer.coords, layer.coords, SIGMOID, layer.delta + out_i - layer.coords); |
| | | if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta; |
| | | if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth) |
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(truth, truth_cpu, layer.batch*outputs); |
| | | if(state.truth){ |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); |
| | | forward_detection_layer(layer, in_cpu, truth_cpu); |
| | | cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); |
| | | free(in_cpu); |
| | | if(truth_cpu) free(truth_cpu); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta) |
| | | void backward_detection_layer_gpu(detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.input = in_cpu; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.delta = delta_cpu; |
| | | |
| | | cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | backward_detection_layer(layer, in_cpu, delta_cpu); |
| | | cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | backward_detection_layer(l, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); |
| | | |
| | | free(in_cpu); |
| | | free(delta_cpu); |