| | |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.cost = calloc(1, sizeof(float)); |
| | | l.biases = calloc(n*2, sizeof(float)); |
| | | l.bias_updates = calloc(n*2, sizeof(float)); |
| | | l.outputs = h*w*n*(classes + coords + 1); |
| | | l.inputs = l.outputs; |
| | | l.truths = 30*(5); |
| | | l.delta = calloc(batch*l.outputs, sizeof(float)); |
| | | l.output = calloc(batch*l.outputs, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < n*2; ++i){ |
| | | l.biases[i] = .5; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | |
| | | return l; |
| | | } |
| | | |
| | | box get_region_box2(float *x, int index, int i, int j, int w, int h) |
| | | box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) |
| | | { |
| | | float aspect = exp(x[index+0]); |
| | | float scale = logistic_activate(x[index+1]); |
| | | float move_x = x[index+2]; |
| | | float move_y = x[index+3]; |
| | | |
| | | box b; |
| | | b.w = sqrt(scale * aspect); |
| | | b.h = b.w * 1./aspect; |
| | | b.x = move_x * b.w + (i + .5)/w; |
| | | b.y = move_y * b.h + (j + .5)/h; |
| | | b.x = (i + .5)/w + x[index + 0] * biases[2*n]; |
| | | b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1]; |
| | | b.w = exp(x[index + 2]) * biases[2*n]; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1]; |
| | | return b; |
| | | } |
| | | |
| | | float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta) |
| | | float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale) |
| | | { |
| | | box pred = get_region_box2(output, index, i, j, w, h); |
| | | float iou = box_iou(pred, truth); |
| | | float true_aspect = truth.w/truth.h; |
| | | float true_scale = truth.w*truth.h; |
| | | |
| | | float true_dx = (truth.x - (i+.5)/w) / truth.w; |
| | | float true_dy = (truth.y - (j+.5)/h) / truth.h; |
| | | delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]); |
| | | delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1])); |
| | | delta[index + 2] = true_dx - output[index + 2]; |
| | | delta[index + 3] = true_dy - output[index + 3]; |
| | | return iou; |
| | | } |
| | | |
| | | box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic) |
| | | { |
| | | box b; |
| | | b.x = (x[index + 0] + i + .5)/w; |
| | | b.y = (x[index + 1] + j + .5)/h; |
| | | b.w = x[index + 2]; |
| | | b.h = x[index + 3]; |
| | | if(logistic){ |
| | | b.w = logistic_activate(x[index + 2]); |
| | | b.h = logistic_activate(x[index + 3]); |
| | | } |
| | | if(adjust && b.w < .01) b.w = .01; |
| | | if(adjust && b.h < .01) b.h = .01; |
| | | return b; |
| | | } |
| | | |
| | | float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale) |
| | | { |
| | | box pred = get_region_box(output, index, i, j, w, h, 0, logistic); |
| | | box pred = get_region_box(x, biases, n, index, i, j, w, h); |
| | | float iou = box_iou(pred, truth); |
| | | |
| | | delta[index + 0] = scale * (truth.x - pred.x); |
| | | delta[index + 1] = scale * (truth.y - pred.y); |
| | | delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1)); |
| | | delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1)); |
| | | float tx = (truth.x - (i + .5)/w) / biases[2*n]; |
| | | float ty = (truth.y - (j + .5)/h) / biases[2*n + 1]; |
| | | float tw = log(truth.w / biases[2*n]); |
| | | float th = log(truth.h / biases[2*n + 1]); |
| | | |
| | | delta[index + 0] = scale * (tx - x[index + 0]); |
| | | delta[index + 1] = scale * (ty - x[index + 1]); |
| | | delta[index + 2] = scale * (tw - x[index + 2]); |
| | | delta[index + 3] = scale * (th - x[index + 3]); |
| | | return iou; |
| | | } |
| | | |
| | |
| | | return (x != x); |
| | | } |
| | | |
| | | #define LOG 1 |
| | | #define LOG 0 |
| | | |
| | | void forward_region_layer(const region_layer l, network_state state) |
| | | { |
| | |
| | | if(!state.train) return; |
| | | memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); |
| | | float avg_iou = 0; |
| | | float recall = 0; |
| | | float avg_cat = 0; |
| | | float avg_obj = 0; |
| | | float avg_anyobj = 0; |
| | |
| | | for (i = 0; i < l.w; ++i) { |
| | | for (n = 0; n < l.n; ++n) { |
| | | int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; |
| | | box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG); |
| | | box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); |
| | | float best_iou = 0; |
| | | for(t = 0; t < 30; ++t){ |
| | | box truth = float_to_box(state.truth + t*5 + b*l.truths); |
| | |
| | | truth.y = (j + .5)/l.h; |
| | | truth.w = .5; |
| | | truth.h = .5; |
| | | delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1); |
| | | delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); |
| | | //l.delta[index + 0] = .1 * (0 - l.output[index + 0]); |
| | | //l.delta[index + 1] = .1 * (0 - l.output[index + 1]); |
| | | //l.delta[index + 2] = .1 * (0 - l.output[index + 2]); |
| | | //l.delta[index + 3] = .1 * (0 - l.output[index + 3]); |
| | | } |
| | | } |
| | | } |
| | |
| | | printf("index %d %d\n",i, j); |
| | | for(n = 0; n < l.n; ++n){ |
| | | int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; |
| | | box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG); |
| | | printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); |
| | | box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); |
| | | printf("pred: (%f, %f) %f x %f\n", pred.x*l.w - i - .5, pred.y * l.h - j - .5, pred.w, pred.h); |
| | | pred.x = 0; |
| | | pred.y = 0; |
| | | float iou = box_iou(pred, truth_shift); |
| | |
| | | best_n = n; |
| | | } |
| | | } |
| | | printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h); |
| | | printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x * l.w - i - .5, truth.y*l.h - j - .5, truth.w, truth.h); |
| | | |
| | | float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale); |
| | | float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale); |
| | | if(iou > .5) recall += 1; |
| | | avg_iou += iou; |
| | | |
| | | //l.delta[best_index + 4] = iou - l.output[best_index + 4]; |
| | |
| | | printf("\n"); |
| | | reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
| | | *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
| | | printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count); |
| | | printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); |
| | | } |
| | | |
| | | void backward_region_layer(const region_layer l, network_state state) |