| | |
| | | #include <time.h> |
| | | |
| | | #ifdef CUDNN |
| | | #pragma comment(lib, "cudnn.lib") |
| | | #pragma comment(lib, "cudnn.lib") |
| | | #endif |
| | | |
| | | #ifdef AI2 |
| | |
| | | { |
| | | |
| | | #ifdef CUDNN_HALF |
| | | // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
| | | // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 |
| | | // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! |
| | | const cudnnDataType_t data_type = CUDNN_DATA_HALF; |
| | | // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
| | | // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 |
| | | // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! |
| | | const cudnnDataType_t data_type = CUDNN_DATA_HALF; |
| | | #else |
| | | cudnnDataType_t data_type = CUDNN_DATA_FLOAT; |
| | | cudnnDataType_t data_type = CUDNN_DATA_FLOAT; |
| | | #endif |
| | | |
| | | #if(CUDNN_MAJOR >= 7) |
| | | // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH |
| | | // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT |
| | | // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF |
| | | // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ |
| | | // 1. Accumulation into FP32 |
| | | // 2. Loss Scaling - required only for: activation gradients. We do not use. |
| | | // 3. FP32 Master Copy of Weights |
| | | // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
| | | cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH); |
| | | // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH |
| | | // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT |
| | | // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF |
| | | // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ |
| | | // 1. Accumulation into FP32 |
| | | // 2. Loss Scaling - required only for: activation gradients. We do not use. |
| | | // 3. FP32 Master Copy of Weights |
| | | // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
| | | cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH); |
| | | #endif |
| | | |
| | | // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
| | | // on architectures with DP4A support (compute capability 6.1 and later). |
| | | //cudnnDataType_t data_type = CUDNN_DATA_INT8; |
| | | // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
| | | // on architectures with DP4A support (compute capability 6.1 and later). |
| | | //cudnnDataType_t data_type = CUDNN_DATA_INT8; |
| | | |
| | | // backward delta |
| | | // backward delta |
| | | cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | |
| | | // forward |
| | | // forward |
| | | cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | |
| | | // batch norm |
| | | cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); |
| | | #if(CUDNN_MAJOR >= 6) |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0 |
| | | #else |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1 |
| | | #endif |
| | | int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; |
| | | int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; |
| | | int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; |
| | | if (cudnn_preference == cudnn_smallest) |
| | | { |
| | | forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; |
| | | backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; |
| | | backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; |
| | | } |
| | | // batch norm |
| | | cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); |
| | | cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); |
| | | |
| | | cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
| | | cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | #if(CUDNN_MAJOR >= 6) |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0 |
| | | #else |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1 |
| | | #endif |
| | | int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; |
| | | int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; |
| | | int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; |
| | | if (cudnn_preference == cudnn_smallest) |
| | | { |
| | | forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; |
| | | backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; |
| | | backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; |
| | | printf(" CUDNN-slow "); |
| | | } |
| | | |
| | | cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
| | | l->srcTensorDesc, |
| | | l->weightDesc, |
| | | l->convDesc, |
| | | l->dstTensorDesc, |
| | | forward_algo, |
| | | forward_algo, |
| | | 0, |
| | | &l->fw_algo); |
| | | cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), |
| | |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dsrcTensorDesc, |
| | | backward_algo, |
| | | backward_algo, |
| | | 0, |
| | | &l->bd_algo); |
| | | cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), |
| | |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dweightDesc, |
| | | backward_filter, |
| | | backward_filter, |
| | | 0, |
| | | &l->bf_algo); |
| | | |
| | | if (data_type == CUDNN_DATA_HALF) |
| | | { |
| | | // HALF-16 if(data_type == CUDNN_DATA_HALF) |
| | | l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; |
| | | l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; |
| | | l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; |
| | | |
| | | // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT) |
| | | //l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED; |
| | | //l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED; |
| | | //l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED; |
| | | |
| | | int fw = 0, bd = 0, bf = 0; |
| | | if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1; |
| | | //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n"); |
| | | if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2; |
| | | //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1; |
| | | //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n"); |
| | | if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2; |
| | | //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1; |
| | | //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n"); |
| | | if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2; |
| | | //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | //if (fw == 2 && bd == 2 && bf == 2) printf("TF "); |
| | | //else if (fw == 1 && bd == 1 && bf == 1) printf("TH "); |
| | | } |
| | | } |
| | | #endif |
| | | #endif |
| | |
| | | |
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | #ifdef CUDNN_HALF |
| | | l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2); |
| | | l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2); |
| | | l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2); |
| | | l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2); |
| | | #endif |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); |
| | | |
| | |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | } |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&l.normTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDescF16); |
| | | cudnnCreateTensorDescriptor(&l.normTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.srcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.weightDesc); |
| | |
| | | l.workspace_size = get_workspace_size(l); |
| | | l.activation = activation; |
| | | |
| | | fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); |
| | | //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); |
| | | l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.; |
| | | fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); |
| | | |
| | | return l; |
| | | } |
| | |
| | | |
| | | void resize_convolutional_layer(convolutional_layer *l, int w, int h) |
| | | { |
| | | int old_w = l->w; |
| | | int old_h = l->h; |
| | | int old_w = l->w; |
| | | int old_h = l->h; |
| | | l->w = w; |
| | | l->h = h; |
| | | int out_w = convolutional_out_width(*l); |
| | |
| | | l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); |
| | | } |
| | | |
| | | if (l->xnor) { |
| | | //l->binary_input = realloc(l->inputs*l->batch, sizeof(float)); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | if (old_w < w || old_h < h) { |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | if (old_w < w || old_h < h) { |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | |
| | | if (l->batch_normalize) { |
| | | cuda_free(l->x_gpu); |
| | | cuda_free(l->x_norm_gpu); |
| | | if (l->batch_normalize) { |
| | | cuda_free(l->x_gpu); |
| | | cuda_free(l->x_norm_gpu); |
| | | |
| | | l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | } |
| | | } |
| | | l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | } |
| | | |
| | | if (l->xnor) { |
| | | cuda_free(l->binary_input_gpu); |
| | | l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch); |
| | | } |
| | | } |
| | | #ifdef CUDNN |
| | | cudnn_convolutional_setup(l, cudnn_fastest); |
| | | #endif |
| | |
| | | l->workspace_size = get_workspace_size(*l); |
| | | |
| | | #ifdef CUDNN |
| | | // check for excessive memory consumption |
| | | size_t free_byte; |
| | | size_t total_byte; |
| | | check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
| | | if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
| | | printf(" used slow CUDNN algo without Workspace! \n"); |
| | | cudnn_convolutional_setup(l, cudnn_smallest); |
| | | l->workspace_size = get_workspace_size(*l); |
| | | } |
| | | // check for excessive memory consumption |
| | | size_t free_byte; |
| | | size_t total_byte; |
| | | check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
| | | if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
| | | printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); |
| | | cudnn_convolutional_setup(l, cudnn_smallest); |
| | | l->workspace_size = get_workspace_size(*l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | //printf("\n weight = %f \n", A_PART); |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { |
| | | size_t i, counter; |
| | | counter = 0; |
| | | for (i = 0; i < size; i += size / filters) { |
| | | mean_arr[counter++] = fabs(src[i]); |
| | | } |
| | | } |
| | | |
| | | /* |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) { |
| | | |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | size_t i, dst_i, dst_shift; |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) set_bit(dst, i); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { |
| | | memset(dst, 0, size *sizeof(float)); |
| | | size_t i, src_i, src_shift; |
| | | |
| | | for (i = 0; i < size; ++i) { |
| | | float mean_val = 1; |
| | | if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); |
| | | if(get_bit(src, i)) dst[i] = mean_val; |
| | | else dst[i] = -mean_val; |
| | | } |
| | | } |
| | | |
| | | void binary_align_weights(convolutional_layer *l, size_t lda_align) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | | size_t align_weights_size = new_lda * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | size_t i, j; |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
| | | |
| | | l->mean_arr = calloc(l->n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | |
| | | |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | //char * |
| | | *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | /* |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | }*/ |
| | | //transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size) |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, 16); |
| | | |
| | | int blocksize = 1; |
| | | int mod_k = 1, mod_n = 1; |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (k % i == 0) mod_k = i; |
| | | |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (n % i == 0) mod_n = i; |
| | | |
| | | blocksize = (mod_k < mod_n) ? mod_k : mod_n; |
| | | |
| | | transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize); |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, blocksize); |
| | | //printf("\n blocksize = %d \n", blocksize); |
| | | |
| | | float_to_bit(t_input, *t_bit_input, t_intput_size); |
| | | free(t_input); |
| | | |
| | | return t_intput_size; |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | |
| | | if(l.xnor){ |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | if (!l.align_bit_weights) { |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); |
| | | } |
| | | swap_binary(&l); |
| | | binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); |
| | | state.input = l.binary_input; |
| | |
| | | int k = l.size*l.size*l.c; |
| | | int n = out_h*out_w; |
| | | |
| | | |
| | | float *a = l.weights; |
| | | float *b = state.workspace; |
| | | float *c = l.output; |
| | | |
| | | static int u = 0; |
| | | u++; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | | size_t output_size = l.outputs; |
| | | //float *count_output = calloc(output_size, sizeof(float)); |
| | | //size_t bit_output_size = output_size / 8 + 1; |
| | | //char *bit_output = calloc(bit_output_size, sizeof(char)); |
| | | |
| | | size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() |
| | | size_t bit_input_size = intput_size / 8 + 1; |
| | | //char *bit_input = calloc(bit_input_size, sizeof(char)); |
| | | |
| | | size_t weights_size = k * m; //l.size*l.size*l.c*l.n; |
| | | size_t bit_weights_size = weights_size / 8 + 1; |
| | | //char *bit_weights = calloc(bit_weights_size, sizeof(char)); |
| | | //float *mean_arr = calloc(l.n, sizeof(float)); |
| | | |
| | | // test: float->bit->float |
| | | //get_mean_array(l.weights, weights_size, l.n, mean_arr); |
| | | //float_to_bit(l.weights, bit_weights, weights_size); |
| | | //memset(l.weights, 0, weights_size * sizeof(float)); |
| | | //bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float |
| | | |
| | | //float_to_bit(b, bit_input, intput_size); |
| | | //memset(b, 0, intput_size * sizeof(float)); |
| | | //bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float |
| | | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | /* |
| | | size_t ldb_align = 256;// 8; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | } |
| | | float_to_bit(t_input, t_bit_input, t_intput_size); |
| | | |
| | | |
| | | |
| | | if (!l.align_bit_weights) |
| | | { |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = a[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l.align_bit_weights, align_weights_size); |
| | | |
| | | l.mean_arr = calloc(l.n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | */ |
| | | size_t ldb_align = 256; // 256 bit for AVX2 |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | |
| | | //free(align_bit_weights); |
| | | } |
| | | |
| | | // for bit_input: (k * n) |
| | | //if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer |
| | | //else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL); |
| | | |
| | | //gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); |
| | | |
| | | //printf("\n u = %d \n", u); |
| | | |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | |
| | | //int j; |
| | | //if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2); |
| | | |
| | | //free(count_output); |
| | | //free(bit_input); |
| | | //free(bit_weights); |
| | | //free(mean_arr); |
| | | } |
| | | else { |
| | | gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); |
| | | // bit-count to float |
| | | } |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | } |
| | |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | activate_array(l.output, m*n*l.batch, l.activation); |
| | | //activate_array(l.output, m*n*l.batch, l.activation); |
| | | activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); |
| | | |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | |
| | | |
| | | float *im = state.input+i*l.c*l.h*l.w; |
| | | |
| | | im2col_cpu(im, l.c, l.h, l.w, |
| | | im2col_cpu(im, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |