Joseph Redmon
2014-05-02 5ef74c2031a040f30a670dc7d60790fc6a9ec720
src/connected_layer.c
@@ -39,27 +39,6 @@
    return layer;
}
/*
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{
    int i;
    for(i = 0; i < layer.outputs; ++i){
        float delta = layer.bias_updates[i];
        layer.bias_adapt[i] += delta*delta;
        layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
        layer.biases[i] += layer.bias_momentum[i];
    }
    for(i = 0; i < layer.outputs*layer.inputs; ++i){
        float delta = layer.weight_updates[i];
        layer.weight_adapt[i] += delta*delta;
        layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
        layer.weights[i] += layer.weight_momentum[i];
    }
    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
}
*/
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{
    int i;
@@ -89,7 +68,6 @@
    for(i = 0; i < layer.outputs*layer.batch; ++i){
        layer.output[i] = activate(layer.output[i], layer.activation);
    }
    //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
}
void learn_connected_layer(connected_layer layer, float *input)
@@ -110,8 +88,6 @@
void backward_connected_layer(connected_layer layer, float *input, float *delta)
{
    memset(delta, 0, layer.inputs*sizeof(float));
    int m = layer.inputs;
    int k = layer.outputs;
    int n = layer.batch;
@@ -120,40 +96,6 @@
    float *b = layer.delta;
    float *c = delta;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
}
/*
   void forward_connected_layer(connected_layer layer, float *input)
   {
   int i, j;
   for(i = 0; i < layer.outputs; ++i){
   layer.output[i] = layer.biases[i];
   for(j = 0; j < layer.inputs; ++j){
   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
   }
   layer.output[i] = activate(layer.output[i], layer.activation);
   }
   }
   void learn_connected_layer(connected_layer layer, float *input)
   {
   int i, j;
   for(i = 0; i < layer.outputs; ++i){
   layer.delta[i] *= gradient(layer.output[i], layer.activation);
   layer.bias_updates[i] += layer.delta[i];
   for(j = 0; j < layer.inputs; ++j){
   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
   }
   }
   }
   void backward_connected_layer(connected_layer layer, float *input, float *delta)
   {
   int i, j;
   for(j = 0; j < layer.inputs; ++j){
   delta[j] = 0;
   for(i = 0; i < layer.outputs; ++i){
   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
   }
   }
   }
 */