| | |
| | | convolutional_out_width(layer)* |
| | | layer.batch; |
| | | |
| | | memset(layer.output, 0, m*n*sizeof(float)); |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch)); |
| | | im2col_gpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch)); |
| | | } |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | |
| | | for(i = 0; i < m*n; ++i){ |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); |
| | | |
| | | } |
| | | |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | int size = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.n* |
| | | layer.batch; |
| | | for(i = 0; i < size; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | } |
| | | gemm(0,0,m,n,k,1,a,k,b,n,0,c,n); |
| | | activate_array(layer.output, m*n, layer.activation); |
| | | } |
| | | |
| | | void learn_bias_convolutional_layer(convolutional_layer layer) |
| | |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | gradient_delta_convolutional_layer(layer); |
| | | learn_bias_convolutional_layer(layer); |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.batch; |
| | | gradient_array(layer.output, m*k, layer.activation, layer.delta); |
| | | learn_bias_convolutional_layer(layer); |
| | | |
| | | float *a = layer.delta; |
| | | float *b = layer.col_image; |
| | |
| | | float *b = layer.delta; |
| | | float *c = layer.col_image; |
| | | |
| | | |
| | | memset(c, 0, m*n*sizeof(float)); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.biases[i] += step*layer.bias_updates[i]; |
| | | layer.bias_updates[i] *= momentum; |
| | | } |
| | | for(i = 0; i < size; ++i){ |
| | | layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]); |
| | | layer.filter_updates[i] *= momentum; |
| | | } |
| | | axpy_cpu(layer.n, step, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, momentum, layer.bias_updates, 1); |
| | | |
| | | scal_cpu(size, 1.-step*decay, layer.filters, 1); |
| | | axpy_cpu(size, step, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, momentum, layer.filter_updates, 1); |
| | | } |
| | | /* |
| | | |
| | | void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta) |
| | | { |
| | | image in_delta = float_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | rotate_image(layer.kernels[i]); |
| | | } |
| | | |
| | | zero_image(in_delta); |
| | | upsample_image(out_delta, layer.stride, layer.upsampled); |
| | | for(j = 0; j < in_delta.c; ++j){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge); |
| | | } |
| | | } |
| | | |
| | | for(i = 0; i < layer.n; ++i){ |
| | | rotate_image(layer.kernels[i]); |
| | | } |
| | | } |
| | | |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, float *input) |
| | | { |
| | | int i; |
| | | image in_image = float_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) |
| | | + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | layer.bias_updates[i] = 0; |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) |
| | | + momentum*layer.kernel_momentum[i].data[j]; |
| | | layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window) |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | int size = layer.size; |
| | | h = size; |
| | | w = (size + border) * layer.n - border; |
| | | c = layer.c; |
| | | if(c != 3 || !color){ |
| | | h = (h+border)*c - border; |
| | | c = 1; |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image k = get_convolutional_filter(layer, i); |
| | | //printf("%f ** ", layer.biases[i]); |
| | | //print_image(k); |
| | | image copy = copy_image(k); |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | //set_pixel(copy,0,0,j,layer.biases[i]); |
| | | } |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < k.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(k, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | image delta = get_convolutional_delta(layer); |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_image(layer); |
| | | image dc = collapse_image_layers(delta, 1); |
| | | char buff[256]; |
| | | sprintf(buff, "%s: Delta", window); |
| | | sprintf(buff, "%s: Output", window); |
| | | show_image(dc, buff); |
| | | save_image(dc, buff); |
| | | free_image(dc); |
| | | show_image(filters, window); |
| | | free_image(filters); |
| | | return single_filters; |
| | | } |
| | | |