| | |
| | | save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
| | | } |
| | | |
| | | char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+1; |
| | | int j; |
| | | int r, c; |
| | | float amount[AMNT] = {0}; |
| | | for(r = 0; r < side*side; ++r){ |
| | | float val = box[r*5]; |
| | | float val = box[r*elems]; |
| | | for(j = 0; j < AMNT; ++j){ |
| | | if(val > amount[j]) { |
| | | float swap = val; |
| | |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | j = (r*side + c) * elems; |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int class = max_index(box+j+1, classes); |
| | | int z; |
| | | for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+1+z], class_names[z]); |
| | | printf("%f %s\n", box[j+1+class], class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*im.h; |
| | | int w = box[j+4]*im.w; |
| | | //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | //printf("%d %d %d %d\n", x, y, w, h); |
| | | //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
| | | } |
| | | } |
| | | } |
| | | //printf("Done\n"); |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = net.seen/imgs; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | data train, buffer; |
| | | int im_dim = 512; |
| | | int jitter = 64; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]); |
| | | draw_detection(im, train.y.vals[923], 7); |
| | | image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | show_image(im, "truth"); |
| | | cvWaitKey(0); |
| | | */ |
| | |
| | | net.seen += imgs; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | if(i%800==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int num_output = 1225; |
| | | int im_size = 448; |
| | | int classes = 20; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 50; |
| | | int splits = 100; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer); |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer); |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer); |
| | | |
| | | fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time)); |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k; |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += 5){ |
| | | if (pred.vals[j][k] > .005){ |
| | | int index = k/5; |
| | | for(k = 0; k < pred.cols; k += classes+4+1){ |
| | | |
| | | /* |
| | | int z; |
| | | for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]); |
| | | printf("\n"); |
| | | */ |
| | | |
| | | float p = pred.vals[j][k]; |
| | | //if (pred.vals[j][k] > .001){ |
| | | for(class = 0; class < classes; ++class){ |
| | | int index = (k)/(classes+4+1); |
| | | int r = index/7; |
| | | int c = index%7; |
| | | float y = (32.*(r + pred.vals[j][k+1]))/224.; |
| | | float x = (32.*(c + pred.vals[j][k+2]))/224.; |
| | | float h = (256.*(pred.vals[j][k+3]))/224.; |
| | | float w = (256.*(pred.vals[j][k+4]))/224.; |
| | | printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w); |
| | | float y = (r + pred.vals[j][k+1+classes])/7.; |
| | | float x = (c + pred.vals[j][k+2+classes])/7.; |
| | | float h = pred.vals[j][k+3+classes]; |
| | | float w = pred.vals[j][k+4+classes]; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, p*pred.vals[j][k+class+1], y, x, h, w); |
| | | } |
| | | //} |
| | | } |
| | | } |
| | | |
| | |
| | | save_network(net, outfile); |
| | | } |
| | | |
| | | void train_captcha(char *cfgfile, char *weightfile) |
| | | { |
| | | float avg_loss = -1; |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | list *plist = get_paths("/data/captcha/train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | ++i; |
| | | time=clock(); |
| | | data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200); |
| | | translate_data_rows(train, -128); |
| | | scale_data_rows(train, 1./128); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void validate_captcha(char *cfgfile, char *weightfile) |
| | | { |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int imgs = 1000; |
| | | int numchars = 37; |
| | | list *plist = get_paths("/data/captcha/valid.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200); |
| | | translate_data_rows(valid, -128); |
| | | scale_data_rows(valid, 1./128); |
| | | matrix pred = network_predict_data(net, valid); |
| | | int i, k; |
| | | int correct = 0; |
| | | int total = 0; |
| | | int accuracy = 0; |
| | | for(i = 0; i < imgs; ++i){ |
| | | int allcorrect = 1; |
| | | for(k = 0; k < 10; ++k){ |
| | | char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars)); |
| | | char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars)); |
| | | if (truth != prediction) allcorrect=0; |
| | | if (truth != '.' && truth == prediction) ++correct; |
| | | if (truth != '.' || truth != prediction) ++total; |
| | | } |
| | | accuracy += allcorrect; |
| | | } |
| | | printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total); |
| | | free_data(valid); |
| | | } |
| | | |
| | | void test_captcha(char *cfgfile, char *weightfile) |
| | | { |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | clock_t time; |
| | | char filename[256]; |
| | | while(1){ |
| | | printf("Enter filename: "); |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | time = clock(); |
| | | image im = load_image_color(filename, 60, 200); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("Predicted in %f\n", sec(clock() - time)); |
| | | print_letters(predictions, 10); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void train_imagenet(char *cfgfile, char *weightfile) |
| | | { |
| | | float avg_loss = -1; |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int im_size = 224; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 224, 224); |
| | | image im = load_image_color(filename, im_size, im_size); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "captcha")) train_captcha(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "tcaptcha")) test_captcha(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "vcaptcha")) validate_captcha(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0); |
| | | //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0); |