| | |
| | | |
| | | Just do `make` in the darknet directory. |
| | | Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1) |
| | | * `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/use/local/cuda`) |
| | | * `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`) |
| | | * `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`) |
| | | * `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams |
| | | * `DEBUG=1` to bould debug version of Yolo |
| | |
| | | * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2) |
| | | * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3) |
| | | * change line `classes=20` to your number of objects |
| | | * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)*5 |
| | | * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)*5, so if `classes=2` then should be `filter=35` |
| | | |
| | | (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`) |
| | | |
| | |
| | | |
| | |  |
| | | |
| | | How to calculate **mAP** [voc_eval.py](https://github.com/AlexeyAB/darknet/blob/master/scripts/voc_eval.py) or [datascience.stackexchange link](https://datascience.stackexchange.com/questions/16797/what-does-the-notation-map-5-95-mean) |
| | | |
| | | ### Custom object detection: |
| | | |
| | | Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights` |