Alexey
2018-06-07 63aeb63dee51aff8d0b7c862f9c7966e055eb061
README.md
@@ -159,6 +159,8 @@
    
5. If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x:
    `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: `CUDNN_HALF;`
    **Note:** CUDA must be installed only after that MSVS2015 had been installed.
### How to compile (custom):
@@ -180,7 +182,7 @@
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
- compile to .exe (X64 & Release) and put .dll-s near with .exe: https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg
    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
@@ -417,7 +419,7 @@
  * check that each object are mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, ...). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark
  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds
  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 images for each class or more
  * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files)