| | |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay) |
| | | void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1); |
| | | } |
| | | |
| | |
| | | void backward_connected_layer(connected_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | float alpha = 1./layer.batch; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | float *a = state.input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay) |
| | | void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1); |
| | | } |
| | | |
| | |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
| | | axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | float * a = state.input; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |