| | |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer)); |
| | | |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | |
| | | #endif |
| | | } |
| | | |
| | | void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in) |
| | | void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | int out_h = deconvolutional_out_height(layer); |
| | |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float *a = layer.filters; |
| | | float *b = in + i*layer.c*layer.h*layer.w; |
| | | float *b = state.input + i*layer.c*layer.h*layer.w; |
| | | float *c = layer.col_image; |
| | | |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | |
| | | activate_array(layer.output, layer.batch*layer.n*size, layer.activation); |
| | | } |
| | | |
| | | void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta) |
| | | void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int out_h = deconvolutional_out_height(layer); |
| | |
| | | gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta); |
| | | backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size); |
| | | |
| | | if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | int m = layer.c; |
| | | int n = layer.size*layer.size*layer.n; |
| | | int k = layer.h*layer.w; |
| | | |
| | | float *a = in + i*m*n; |
| | | float *a = state.input + i*m*n; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | |
| | | layer.size, layer.stride, 0, b); |
| | | gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
| | | |
| | | if(delta){ |
| | | if(state.delta){ |
| | | int m = layer.c; |
| | | int n = layer.h*layer.w; |
| | | int k = layer.size*layer.size*layer.n; |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = delta + i*n*m; |
| | | float *c = state.delta + i*n*m; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_deconvolutional_layer(deconvolutional_layer layer) |
| | | void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); |
| | | axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, layer.momentum, layer.filter_updates, 1); |
| | | axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, momentum, layer.filter_updates, 1); |
| | | } |
| | | |
| | | |