Joseph Redmon
2015-03-30 6553b3f0e3e55fc30a99c7d4b5798aa86d18a114
src/image.c
@@ -4,6 +4,86 @@
int windows = 0;
float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} };
float get_color(int c, int x, int max)
{
    float ratio = ((float)x/max)*5;
    int i = floor(ratio);
    int j = ceil(ratio);
    ratio -= i;
    float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
    //printf("%f\n", r);
    return r;
}
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b)
{
    normalize_image(a);
    int i;
    if(x1 < 0) x1 = 0;
    if(x1 >= a.w) x1 = a.w-1;
    if(x2 < 0) x2 = 0;
    if(x2 >= a.w) x2 = a.w-1;
    if(y1 < 0) y1 = 0;
    if(y1 >= a.h) y1 = a.h-1;
    if(y2 < 0) y2 = 0;
    if(y2 >= a.h) y2 = a.h-1;
    for(i = x1; i < x2; ++i){
        a.data[i + y1*a.w + 0*a.w*a.h] = b;
        a.data[i + y2*a.w + 0*a.w*a.h] = b;
        a.data[i + y1*a.w + 1*a.w*a.h] = g;
        a.data[i + y2*a.w + 1*a.w*a.h] = g;
        a.data[i + y1*a.w + 2*a.w*a.h] = r;
        a.data[i + y2*a.w + 2*a.w*a.h] = r;
    }
    for(i = y1; i < y2; ++i){
        a.data[x1 + i*a.w + 0*a.w*a.h] = b;
        a.data[x2 + i*a.w + 0*a.w*a.h] = b;
        a.data[x1 + i*a.w + 1*a.w*a.h] = g;
        a.data[x2 + i*a.w + 1*a.w*a.h] = g;
        a.data[x1 + i*a.w + 2*a.w*a.h] = r;
        a.data[x2 + i*a.w + 2*a.w*a.h] = r;
    }
}
void jitter_image(image a, int h, int w, int dh, int dw)
{
    int i,j,k;
    for(k = 0; k < a.c; ++k){
        for(i = 0; i < h; ++i){
            for(j = 0; j < w; ++j){
                int src = j + dw + (i+dh)*a.w + k*a.w*a.h;
                int dst = j + i*w + k*w*h;
                //printf("%d %d\n", src, dst);
                a.data[dst] = a.data[src];
            }
        }
    }
}
void flip_image(image a)
{
    int i,j,k;
    for(k = 0; k < a.c; ++k){
        for(i = 0; i < a.h; ++i){
            for(j = 0; j < a.w/2; ++j){
                int index = j + a.w*(i + a.h*(k));
                int flip = (a.w - j - 1) + a.w*(i + a.h*(k));
                float swap = a.data[flip];
                a.data[flip] = a.data[index];
                a.data[index] = swap;
            }
        }
    }
}
image image_distance(image a, image b)
{
    int i,j;
@@ -138,7 +218,7 @@
    }
    free_image(copy);
    if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
        int w = 1500;
        int w = 500;
        int h = w*p.h/p.w;
        if(h > 1000){
            h = 1000;
@@ -295,106 +375,6 @@
    return out;
}
// Returns a new image that is a cropped version (rectangular cut-out)
// of the original image.
IplImage* cropImage(const IplImage *img, const CvRect region)
{
    IplImage *imageCropped;
    CvSize size;
    if (img->width <= 0 || img->height <= 0
            || region.width <= 0 || region.height <= 0) {
        //cerr << "ERROR in cropImage(): invalid dimensions." << endl;
        exit(1);
    }
    if (img->depth != IPL_DEPTH_8U) {
        //cerr << "ERROR in cropImage(): image depth is not 8." << endl;
        exit(1);
    }
    // Set the desired region of interest.
    cvSetImageROI((IplImage*)img, region);
    // Copy region of interest into a new iplImage and return it.
    size.width = region.width;
    size.height = region.height;
    imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels);
    cvCopy(img, imageCropped,NULL);  // Copy just the region.
    return imageCropped;
}
// Creates a new image copy that is of a desired size. The aspect ratio will
// be kept constant if 'keepAspectRatio' is true, by cropping undesired parts
// so that only pixels of the original image are shown, instead of adding
// extra blank space.
// Remember to free the new image later.
IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth,
        int keepAspectRatio)
{
    IplImage *outImg = 0;
    int origWidth = 0;
    int origHeight = 0;
    if (origImg) {
        origWidth = origImg->width;
        origHeight = origImg->height;
    }
    if (newWidth <= 0 || newHeight <= 0 || origImg == 0
            || origWidth <= 0 || origHeight <= 0) {
        //cerr << "ERROR: Bad desired image size of " << newWidth
        //  << "x" << newHeight << " in resizeImage().\n";
        exit(1);
    }
    if (keepAspectRatio) {
        // Resize the image without changing its aspect ratio,
        // by cropping off the edges and enlarging the middle section.
        CvRect r;
        // input aspect ratio
        float origAspect = (origWidth / (float)origHeight);
        // output aspect ratio
        float newAspect = (newWidth / (float)newHeight);
        // crop width to be origHeight * newAspect
        if (origAspect > newAspect) {
            int tw = (origHeight * newWidth) / newHeight;
            r = cvRect((origWidth - tw)/2, 0, tw, origHeight);
        }
        else {  // crop height to be origWidth / newAspect
            int th = (origWidth * newHeight) / newWidth;
            r = cvRect(0, (origHeight - th)/2, origWidth, th);
        }
        IplImage *croppedImg = cropImage(origImg, r);
        // Call this function again, with the new aspect ratio image.
        // Will do a scaled image resize with the correct aspect ratio.
        outImg = resizeImage(croppedImg, newHeight, newWidth, 0);
        cvReleaseImage( &croppedImg );
    }
    else {
        // Scale the image to the new dimensions,
        // even if the aspect ratio will be changed.
        outImg = cvCreateImage(cvSize(newWidth, newHeight),
                origImg->depth, origImg->nChannels);
        if (newWidth > origImg->width && newHeight > origImg->height) {
            // Make the image larger
            cvResetImageROI((IplImage*)origImg);
            // CV_INTER_LINEAR: good at enlarging.
            // CV_INTER_CUBIC: good at enlarging.
            cvResize(origImg, outImg, CV_INTER_LINEAR);
        }
        else {
            // Make the image smaller
            cvResetImageROI((IplImage*)origImg);
            // CV_INTER_AREA: good at shrinking (decimation) only.
            cvResize(origImg, outImg, CV_INTER_AREA);
        }
    }
    return outImg;
}
image ipl_to_image(IplImage* src)
{
    unsigned char *data = (unsigned char *)src->imageData;
@@ -415,6 +395,86 @@
    return out;
}
image crop_image(image im, int dr, int dc, int h, int w)
{
    image cropped = make_image(h, w, im.c);
    int i, j, k;
    for(k = 0; k < im.c; ++k){
        for(j = 0; j < h; ++j){
            for(i = 0; i < w; ++i){
                int r = j + dr;
                int c = i + dc;
                float val = 128;
                if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
                    val = get_pixel(im, r, c, k);
                }
                set_pixel(cropped, j, i, k, val);
            }
        }
    }
    return cropped;
}
// #wikipedia
image resize_image(image im, int h, int w)
{
    image resized = make_image(h, w, im.c);
    int r, c, k;
    float h_scale = (float)(im.h - 1) / (h - 1) - .00001;
    float w_scale = (float)(im.w - 1) / (w - 1) - .00001;
    for(k = 0; k < im.c; ++k){
        for(r = 0; r < h; ++r){
            for(c = 0; c < w; ++c){
                float sr = r*h_scale;
                float sc = c*w_scale;
                int ir = (int)sr;
                int ic = (int)sc;
                float x = sr-ir;
                float y = sc-ic;
                float val = (1-x) * (1-y) * get_pixel(im, ir, ic, k) +
                    x     * (1-y) * get_pixel(im, ir+1, ic, k) +
                    (1-x) *   y   * get_pixel(im, ir, ic+1, k) +
                    x     *   y   * get_pixel(im, ir+1, ic+1, k);
                set_pixel(resized, r, c, k, val);
            }
        }
    }
    return resized;
}
void test_resize(char *filename)
{
    image im = load_image(filename, 0,0);
    image small = resize_image(im, 63, 65);
    image big = resize_image(im, 512, 513);
    image crop = crop_image(im, 10, 50, 100, 100);
    image crop2 = crop_image(im, -50, -30, 400, 291);
    show_image(im, "original");
    show_image(small, "smaller");
    show_image(big, "bigger");
    show_image(crop, "crop");
    show_image(crop2, "crop2");
    cvWaitKey(0);
}
image load_image_color(char *filename, int h, int w)
{
    IplImage* src = 0;
    if( (src = cvLoadImage(filename, 1)) == 0 )
    {
        printf("Cannot load file image %s\n", filename);
        exit(0);
    }
    image out = ipl_to_image(src);
    if((h && w) && (h != out.h || w != out.w)){
        image resized = resize_image(out, h, w);
        free_image(out);
        out = resized;
    }
    cvReleaseImage(&src);
    return out;
}
image load_image(char *filename, int h, int w)
{
    IplImage* src = 0;
@@ -423,12 +483,12 @@
        printf("Cannot load file image %s\n", filename);
        exit(0);
    }
    if(h && w ){
        IplImage *resized = resizeImage(src, h, w, 1);
        cvReleaseImage(&src);
        src = resized;
    }
    image out = ipl_to_image(src);
    if((h && w) && (h != out.h || w != out.w)){
        image resized = resize_image(out, h, w);
        free_image(out);
        out = resized;
    }
    cvReleaseImage(&src);
    return out;
}
@@ -642,10 +702,21 @@
void print_image(image m)
{
    int i;
    for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]);
    int i, j, k;
    for(i =0 ; i < m.c; ++i){
        for(j =0 ; j < m.h; ++j){
            for(k = 0; k < m.w; ++k){
                printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
                if(k > 30) break;
            }
            printf("\n");
            if(j > 30) break;
        }
        printf("\n");
    }
    printf("\n");
}
image collapse_images_vert(image *ims, int n)
{
    int color = 1;