| | |
| | | |
| | | extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
| | | { |
| | | float alpha = 1./batch; |
| | | |
| | | backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha); |
| | | backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | float * a = layer.filters_gpu; |
| | |
| | | |
| | | extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | |
| | | float * c = layer.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | |
| | |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay) |
| | | extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | |
| | | axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); |
| | | } |
| | | |