| | |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "freeweight_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | | #include "opencl.h" |
| | | |
| | | typedef struct{ |
| | | char *type; |
| | | list *options; |
| | | }section; |
| | | |
| | | int is_network(section *s); |
| | | int is_convolutional(section *s); |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_freeweight(section *s); |
| | | int is_softmax(section *s); |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_normalization(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, network *net, int count) |
| | | typedef struct size_params{ |
| | | int batch; |
| | | int inputs; |
| | | int h; |
| | | int w; |
| | | int c; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer *parse_deconvolutional(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | float learning_rate, momentum, decay; |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); |
| | | |
| | | deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | push_convolutional_layer(*layer); |
| | | if(weights || biases) push_deconvolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, network *net, int count) |
| | | convolutional_layer *parse_convolutional(list *options, size_params params) |
| | | { |
| | | int input; |
| | | float learning_rate, momentum, decay; |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | |
| | | convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | if(weights || biases) push_convolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | parse_data(weights, layer->weights, params.inputs*output); |
| | | #ifdef GPU |
| | | push_connected_layer(*layer); |
| | | if(weights || biases) push_connected_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | softmax_layer *parse_softmax(list *options, network *net, int count) |
| | | softmax_layer *parse_softmax(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | softmax_layer *layer = make_softmax_layer(net->batch, input); |
| | | int groups = option_find_int(options, "groups",1); |
| | | softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer *parse_cost(list *options, network *net, int count) |
| | | detection_layer *parse_detection(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 1); |
| | | int background = option_find_int(options, "background", 1); |
| | | detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer *parse_cost(list *options, size_params params) |
| | | { |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | cost_layer *layer = make_cost_layer(net->batch, input, type); |
| | | cost_layer *layer = make_cost_layer(params.batch, params.inputs, type); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer *parse_crop(list *options, network *net, int count) |
| | | crop_layer *parse_crop(list *options, size_params params) |
| | | { |
| | | float learning_rate, momentum, decay; |
| | | int h,w,c; |
| | | int crop_height = option_find_int(options, "crop_height",1); |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before crop layer must output image."); |
| | | } |
| | | crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer *parse_maxpool(list *options, network *net, int count) |
| | | maxpool_layer *parse_maxpool(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
| | | |
| | | maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | freeweight_layer *parse_freeweight(list *options, network *net, int count) |
| | | dropout_layer *parse_dropout(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | freeweight_layer *layer = make_freeweight_layer(net->batch,input); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer *parse_dropout(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | | float probability = option_find_float(options, "probability", .5); |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | float learning_rate = option_find_float(options, "learning_rate", .001); |
| | | float momentum = option_find_float(options, "momentum", .9); |
| | | float decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | dropout_layer *layer = make_dropout_layer(net->batch,input,probability); |
| | | dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | normalization_layer *parse_normalization(list *options, network *net, int count) |
| | | normalization_layer *parse_normalization(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | int size = option_find_int(options, "size",1); |
| | | float alpha = option_find_float(options, "alpha", 0.); |
| | | float beta = option_find_float(options, "beta", 1.); |
| | | float kappa = option_find_float(options, "kappa", 1.); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before normalization layer must output image."); |
| | | |
| | | normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | void parse_net_options(list *options, network *net) |
| | | { |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = option_find_float(options, "learning_rate", .001); |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | net->seen = option_find_int(options, "seen",0); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->batch /= subdivs; |
| | | net->subdivisions = subdivs; |
| | | |
| | | net->h = option_find_int_quiet(options, "height",0); |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | option_unused(options); |
| | | } |
| | | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | network net = make_network(sections->size, 0); |
| | | |
| | | node *n = sections->front; |
| | | if(!n) error("Config file has no sections"); |
| | | network net = make_network(sections->size - 1); |
| | | size_params params; |
| | | |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | if(!is_network(s)) error("First section must be [net] or [network]"); |
| | | parse_net_options(options, &net); |
| | | |
| | | params.h = net.h; |
| | | params.w = net.w; |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | params.batch = net.batch; |
| | | |
| | | n = n->next; |
| | | int count = 0; |
| | | while(n){ |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | if(is_convolutional(s)){ |
| | | convolutional_layer *layer = parse_convolutional(options, &net, count); |
| | | convolutional_layer *layer = parse_convolutional(options, params); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | }else if(is_deconvolutional(s)){ |
| | | deconvolutional_layer *layer = parse_deconvolutional(options, params); |
| | | net.types[count] = DECONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | }else if(is_connected(s)){ |
| | | connected_layer *layer = parse_connected(options, &net, count); |
| | | connected_layer *layer = parse_connected(options, params); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | }else if(is_crop(s)){ |
| | | crop_layer *layer = parse_crop(options, &net, count); |
| | | crop_layer *layer = parse_crop(options, params); |
| | | net.types[count] = CROP; |
| | | net.layers[count] = layer; |
| | | }else if(is_cost(s)){ |
| | | cost_layer *layer = parse_cost(options, &net, count); |
| | | cost_layer *layer = parse_cost(options, params); |
| | | net.types[count] = COST; |
| | | net.layers[count] = layer; |
| | | }else if(is_detection(s)){ |
| | | detection_layer *layer = parse_detection(options, params); |
| | | net.types[count] = DETECTION; |
| | | net.layers[count] = layer; |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, &net, count); |
| | | softmax_layer *layer = parse_softmax(options, params); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | }else if(is_maxpool(s)){ |
| | | maxpool_layer *layer = parse_maxpool(options, &net, count); |
| | | maxpool_layer *layer = parse_maxpool(options, params); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | }else if(is_normalization(s)){ |
| | | normalization_layer *layer = parse_normalization(options, &net, count); |
| | | normalization_layer *layer = parse_normalization(options, params); |
| | | net.types[count] = NORMALIZATION; |
| | | net.layers[count] = layer; |
| | | }else if(is_dropout(s)){ |
| | | dropout_layer *layer = parse_dropout(options, &net, count); |
| | | dropout_layer *layer = parse_dropout(options, params); |
| | | net.types[count] = DROPOUT; |
| | | net.layers[count] = layer; |
| | | }else if(is_freeweight(s)){ |
| | | freeweight_layer *layer = parse_freeweight(options, &net, count); |
| | | net.types[count] = FREEWEIGHT; |
| | | net.layers[count] = layer; |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | free_section(s); |
| | | ++count; |
| | | n = n->next; |
| | | if(n){ |
| | | image im = get_network_image_layer(net, count); |
| | | params.h = im.h; |
| | | params.w = im.w; |
| | | params.c = im.c; |
| | | params.inputs = get_network_output_size_layer(net, count); |
| | | } |
| | | ++count; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | |
| | | { |
| | | return (strcmp(s->type, "[cost]")==0); |
| | | } |
| | | int is_detection(section *s) |
| | | { |
| | | return (strcmp(s->type, "[detection]")==0); |
| | | } |
| | | int is_deconvolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[deconv]")==0 |
| | | || strcmp(s->type, "[deconvolutional]")==0); |
| | | } |
| | | int is_convolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conv]")==0 |
| | | || strcmp(s->type, "[convolutional]")==0); |
| | | } |
| | | int is_network(section *s) |
| | | { |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_connected(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conn]")==0 |
| | |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | int is_freeweight(section *s) |
| | | { |
| | | return (strcmp(s->type, "[freeweight]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | |
| | | break; |
| | | default: |
| | | if(!read_option(line, current->options)){ |
| | | printf("Config file error line %d, could parse: %s\n", nu, line); |
| | | fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
| | | free(line); |
| | | } |
| | | break; |
| | |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_convolutional_layer(*l); |
| | | #endif |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_convolutional_layer(*l); |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count) |
| | | void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[freeweight]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_deconvolutional_layer(*l); |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[deconvolutional]\n"); |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[dropout]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | } |
| | | fprintf(fp, "probability=%g\n\n", l->probability); |
| | | } |
| | | |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
| | | { |
| | | #ifdef GPU |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_connected_layer(*l); |
| | | #endif |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[connected]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\n" |
| | | "input=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch, l->inputs, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->outputs, |
| | |
| | | void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[crop]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); |
| | | } |
| | | |
| | | void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[localresponsenormalization]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\n" |
| | | "alpha=%g\n" |
| | | "beta=%g\n" |
| | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[softmax]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[detection]\n"); |
| | | fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type)); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(&net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_deconvolutional_layer(layer); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(layer); |
| | | } |
| | | #endif |
| | | fwrite(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s\n", filename); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fread(&net->learning_rate, sizeof(float), 1, fp); |
| | | fread(&net->momentum, sizeof(float), 1, fp); |
| | | fread(&net->decay, sizeof(float), 1, fp); |
| | | fread(&net->seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_deconvolutional_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net->layers[i]; |
| | | fread(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights(network *net, char *filename) |
| | | { |
| | | load_weights_upto(net, filename, net->n); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DECONVOLUTIONAL) |
| | | print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CROP) |
| | | print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == FREEWEIGHT) |
| | | print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DROPOUT) |
| | | print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DETECTION) |
| | | print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == COST) |
| | | print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i); |
| | | } |