SpeedProg
2019-09-06 6968d3d0574e346ae5d14b16d0a644ff1894659f
opencv_dnn.py
@@ -28,7 +28,7 @@
    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
    for hs in hash_size:
        new_pool['card_hash_%d' % hs] = np.NaN
        new_pool['set_hash_%d' % hs] = np.NaN
        new_pool['set_hash_%d' % 64] = np.NaN
        #new_pool['art_hash_%d' % hs] = np.NaN
    for ind, card_info in card_pool.iterrows():
        if ind % 100 == 0:
@@ -49,21 +49,41 @@
        for card_name in card_names:
            # Fetch the image - name can be found based on the card's information
            card_info['name'] = card_name
            cname = card_name
            if cname == 'con':
                cname == 'con__'
            img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
                                                         card_info['collector_number'],
                                                         fetch_data.get_valid_filename(card_info['name']))
                                                         fetch_data.get_valid_filename(cname))
            card_img = cv2.imread(img_name)
            # If the image doesn't exist, download it from the URL
            if card_img is None:
                set_name = card_info['set']
                if set_name == 'con':
                    set_name = 'con__'
                fetch_data.fetch_card_image(card_info,
                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set']))
                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name))
                card_img = cv2.imread(img_name)
            if card_img is None:
                print('WARNING: card %s is not found!' % img_name)
                continue
            set_img = card_img[575:638, 567:700]
            """
            img_cc = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
            img_thresh = cv2.adaptiveThreshold(img_cc, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5)
            # Dilute the image, then erode them to remove minor noises
            kernel = np.ones((3, 3), np.uint8)
            img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
            img_erode = cv2.erode(img_dilate, kernel, iterations=1)
            cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
            cnts2 = cnts2[:10]
            if True:
                cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3)
                #cv2.imshow('Contours', card_img)
                #cv2.waitKey(10000)
            """
            set_img = card_img[595:635, 600:690]
            #cv2.imshow(card_info['name'], set_img)
            # Compute value of the card's perceptual hash, then store it to the database
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
@@ -71,9 +91,9 @@
            img_set = Image.fromarray(set_img)
            for hs in hash_size:
                card_hash = ih.phash(img_card, hash_size=hs)
                set_hash = ih.whash(img_set, hash_size=hs)
                set_hash = ih.whash(img_set, hash_size=64)
                card_info['card_hash_%d' % hs] = card_hash
                card_info['set_hash_%d' % hs] = set_hash
                card_info['set_hash_%d' % 64] = set_hash
                #print('Setting set_hash_%d' % hs)
                #art_hash = ih.phash(img_art, hash_size=hs)
                #card_info['art_hash_%d' % hs] = art_hash
@@ -374,7 +394,7 @@
    return img_graph
def detect_frame(img, card_pool, hash_size=32, size_thresh=100000,
def detect_frame(img, card_pool, hash_size=32, size_thresh=10000,
                 out_path=None, display=True, debug=False):
    """
    Identify all cards in the input frame, display or save the frame if needed
@@ -442,7 +462,7 @@
                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size]
            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % 64]
            cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
            conf = sorted(cd_data['set_hash_diff'])
            print('Confs:', conf)
@@ -624,6 +644,8 @@
        # Merge database for all cards, then calculate pHash values of each, store them
        df_list = []
        for set_name in Config.all_set_list:
            if set_name == 'con':
                set_name = 'con__'
            csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name)
            df = fetch_data.load_all_cards_text(csv_name)
            df_list.append(df)
@@ -632,7 +654,7 @@
        card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes)
    ch_key = 'card_hash_%d' % args.hash_size
    set_key = 'set_hash_%d' % args.hash_size
    set_key = 'set_hash_%d' % 64
    if ch_key not in card_pool.columns:
        # we did not generate this hash_size yet
        print('We need to add hash_size=%d' % (args.hash_size,))