| | |
| | | # Yolo-v2 Windows and Linux version |
| | | # Yolo-v3 and Yolo-v2 for Windows and Linux |
| | | ### (neural network for object detection) |
| | | |
| | | [](https://circleci.com/gh/AlexeyAB/darknet) |
| | | |
| | |
| | | 10. [Using Yolo9000](#using-yolo9000) |
| | | 11. [How to use Yolo as DLL](#how-to-use-yolo-as-dll) |
| | | |
| | | |  |  https://arxiv.org/abs/1612.08242 | |
| | | |
| | | |
| | | |  |  mAP (AP50) https://pjreddie.com/media/files/papers/YOLOv3.pdf | |
| | | |---|---| |
| | | |
| | | |  |  https://arxiv.org/abs/1612.08242 | |
| | | |---|---| |
| | | * Yolo v3 source chart for the RetinaNet on MS COCO got from Table 1 (e): https://arxiv.org/pdf/1708.02002.pdf |
| | | * Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg |
| | | * Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg |
| | | |
| | | |
| | | # "You Only Look Once: Unified, Real-Time Object Detection (version 2)" |
| | | # "You Only Look Once: Unified, Real-Time Object Detection (versions 2 & 3)" |
| | | A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors |
| | | |
| | | This repository is forked from Linux-version: https://github.com/pjreddie/darknet |
| | |
| | | This repository supports: |
| | | |
| | | * both Windows and Linux |
| | | * both OpenCV 3.x and OpenCV 2.4.13 |
| | | * both OpenCV 2.x.x and OpenCV <= 3.4.0 (3.4.1 and higher isn't supported) |
| | | * both cuDNN v5-v7 |
| | | * CUDA >= 7.5 |
| | | * also create SO-library on Linux and DLL-library on Windows |
| | |
| | | ##### Requires: |
| | | * **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409 (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409)) |
| | | * **CUDA 9.1**: https://developer.nvidia.com/cuda-downloads |
| | | * **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download |
| | | * **OpenCV 3.4.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download |
| | | * **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download |
| | | - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi` |
| | | * **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported |
| | | * **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported |
| | | |
| | | ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality): |
| | | * `yolo.cfg` (194 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights |
| | | * `yolo-voc.cfg` (194 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights |
| | | * `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights |
| | | * `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights |
| | | * `yolov3.cfg` (236 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights |
| | | * `yolov3-tiny.cfg` (34 MB COCO **Yolo v3 tiny**) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights |
| | | * `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights |
| | | * `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights |
| | | * `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights |
| | | * `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights |
| | | |
| | | Put it near compiled: darknet.exe |
| | | |
| | |
| | | |
| | | ##### Example of usage in cmd-files from `build\darknet\x64\`: |
| | | |
| | | * `darknet_yolo_v3.cmd` - initialization with 236 MB **Yolo v3** COCO-model yolov3.weights & yolov3.cfg and show detection on the image: dog.jpg |
| | | |
| | | * `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file |
| | | * `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4 |
| | | * `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi |
| | |
| | | |
| | | ##### How to use on the command line: |
| | | |
| | | On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolo.cfg ./yolo.weights` |
| | | On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights` |
| | | |
| | | * 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2` |
| | | * Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2` |
| | | * **Yolo v3** COCO - image: `darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` |
| | | * Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` |
| | | * Output coordinates of objects: `darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -thresh 0.25 dog.jpg -ext_output` |
| | | * 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0` |
| | | * 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0` |
| | | * 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi` |
| | | * 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi` |
| | | * Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0` |
| | | * 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 43 MB VOC-model for video: `darknet.exe detector demo data/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights test.mp4 -i 0` |
| | | * **Yolo v3** 236 MB COCO for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0` |
| | | * 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights` |
| | | * 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4` |
| | | * Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app |
| | | * To process a list of images `image_list.txt` and save results of detection to `result.txt` use: |
| | | `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights < image_list.txt > result.txt` |
| | | You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509 |
| | | * To process a list of images `data/train.txt` and save results of detection to `result.txt` use: |
| | | `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show -ext_output < data/train.txt > result.txt` |
| | | |
| | | ##### For using network video-camera mjpeg-stream with any Android smartphone: |
| | | |
| | |
| | | Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1) |
| | | * `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`) |
| | | * `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`) |
| | | * `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x |
| | | * `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams |
| | | * `DEBUG=1` to bould debug version of Yolo |
| | | * `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU |
| | |
| | | |
| | | ### How to compile on Windows: |
| | | |
| | | 1. If you have **MSVS 2015, CUDA 9.1 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet |
| | | 1. If you have **MSVS 2015, CUDA 9.1, cuDNN 7.0 and OpenCV 3.x** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release** https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg and do the: Build -> Build darknet. **NOTE:** If installing OpenCV, use OpenCV 3.4.0 or earlier. This is a bug in OpenCV 3.4.1 in the C API (see [#500](https://github.com/AlexeyAB/darknet/issues/500)). |
| | | |
| | | 1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe` |
| | | 1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` (or `opencv_world340.dll` and `opencv_ffmpeg340_64.dll`) in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe` |
| | | |
| | | 1.2 Check that there are `bin` and `include` folders in the `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1` if aren't, then copy them to this folder from the path where is CUDA installed |
| | | |
| | | 1.3. To install CUDNN (speedup neural network), do the following: |
| | | |
| | | * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn |
| | | |
| | | * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg |
| | | |
| | | 1.4. If you want to build **without CUDNN** then: open `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and remove this: `CUDNN;` |
| | | |
| | | 2. If you have other version of **CUDA (not 9.1)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 9.1" and change it to your CUDA-version, then do step 1 |
| | | |
| | |
| | | 4.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories: `C:\opencv_2.4.13\opencv\build\include` |
| | | |
| | | 4.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib` |
| | | |
| | | 5. If you want to build with CUDNN to speed up then: |
| | | |
| | | * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn |
| | | |
| | | * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg |
| | | |
| | | * open `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;` |
| | | |
| | | 5. If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x: |
| | | `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: `CUDNN_HALF;` |
| | | |
| | | **Note:** CUDA must be installed only after that MSVS2015 had been installed. |
| | | |
| | | ### How to compile (custom): |
| | | |
| | |
| | | |
| | | `C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include` |
| | | - (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg |
| | | - add to project all .c & .cu files from `\src` |
| | | - add to project all `.c` & `.cu` files and file `http_stream.cpp` from `\src` |
| | | - (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here: |
| | | |
| | | `C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)` |
| | |
| | | |
| | | `OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)` |
| | | |
| | | - compile to .exe (X64 & Release) and put .dll-s near with .exe: |
| | | - compile to .exe (X64 & Release) and put .dll-s near with .exe: https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg |
| | | |
| | | * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64 |
| | | |
| | |
| | | |
| | | ## How to train (Pascal VOC Data): |
| | | |
| | | 1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64` |
| | | 1. Download pre-trained weights for the convolutional layers (154 MB): http://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64` |
| | | |
| | | 2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`: |
| | | * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar |
| | |
| | | |
| | | 5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt` |
| | | |
| | | 6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2) |
| | | 6. Set `batch=64` and `subdivisions=8` in the file `yolov3-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/ee38c6e1513fb089b35be4ffa692afd9b3f65747/cfg/yolov3-voc.cfg#L3-L4) |
| | | |
| | | 7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.) |
| | | 7. Start training by using `train_voc.cmd` or by using the command line: |
| | | |
| | | `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` |
| | | |
| | | (**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.) |
| | | |
| | | If required change pathes in the file `build\darknet\x64\data\voc.data` |
| | | |
| | | More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc |
| | | |
| | | **Note:** If during training you see `nan` values for `avg` (loss) field - then training goes wrong, but if `nan` is in some other lines - then training goes well. |
| | | |
| | | ## How to train with multi-GPU: |
| | | |
| | | 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` |
| | | 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` |
| | | |
| | | 2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3` |
| | | 2. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3` |
| | | |
| | | https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ |
| | | |
| | | ## How to train (to detect your custom objects): |
| | | (to train old Yolo v2 `yolov2-voc.cfg`, `yolov2-tiny-voc.cfg`, `yolo-voc.cfg`, `yolo-voc.2.0.cfg`, ... [click by the link](https://github.com/AlexeyAB/darknet/tree/47c7af1cea5bbdedf1184963355e6418cb8b1b4f#how-to-train-pascal-voc-data)) |
| | | |
| | | 1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and: |
| | | Training Yolo v3: |
| | | |
| | | * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2) |
| | | * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3) |
| | | * change line `classes=20` to your number of objects |
| | | * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)x5, so if `classes=2` then should be `filters=35`. Or if you use `classes=1` then write `filters=30`, **do not write in the cfg-file: filters=(classes + 5)x5**. |
| | | 1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and: |
| | | |
| | | * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3) |
| | | * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4) |
| | | * change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers: |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610 |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696 |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783 |
| | | * change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603 |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689 |
| | | * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776 |
| | | |
| | | So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=21`. |
| | | |
| | | (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`, where `num` is number of anchors) |
| | | **(Do not write in the cfg-file: filters=(classes + 5)x3)** |
| | | |
| | | (Generally `filters` depends on the `classes`, `coords` and number of `mask`s, i.e. filters=`(classes + coords + 1)*<number of mask>`, where `mask` is indices of anchors. If `mask` is absence, then filters=`(classes + coords + 1)*num`) |
| | | |
| | | So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines: |
| | | So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolov3.cfg` in such lines in each of **3** [yolo]-layers: |
| | | |
| | | ``` |
| | | [convolutional] |
| | | filters=35 |
| | | filters=21 |
| | | |
| | | [region] |
| | | classes=2 |
| | |
| | | |
| | | 4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\` |
| | | |
| | | 5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>` |
| | | 5. You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark |
| | | |
| | | It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>` |
| | | |
| | | Where: |
| | | * `<object-class>` - integer number of object from `0` to `(classes-1)` |
| | | * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0 |
| | | * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from (0.0 to 1.0] |
| | | * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>` |
| | | * atention: `<x> <y>` - are center of rectangle (are not top-left corner) |
| | | |
| | | For example for `img1.jpg` you should create `img1.txt` containing: |
| | | For example for `img1.jpg` you will be created `img1.txt` containing: |
| | | |
| | | ``` |
| | | 1 0.716797 0.395833 0.216406 0.147222 |
| | |
| | | data/obj/img3.jpg |
| | | ``` |
| | | |
| | | 7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64` |
| | | 7. Download pre-trained weights for the convolutional layers (154 MB): https://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64` |
| | | |
| | | 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23` |
| | | 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74` |
| | | |
| | | (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations) |
| | | (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2) |
| | | |
| | | 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\` |
| | | |
| | | * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights` |
| | | * After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights` |
| | | |
| | | (in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations `if(iterations > 1000)`) |
| | | |
| | | * Also you can get result earlier than all 45000 iterations. |
| | | |
| | | **Note:** If during training you see `nan` values for `avg` (loss) field - then training goes wrong, but if `nan` is in some other lines - then training goes well. |
| | | |
| | | **Note:** If you changed width= or height= in your cfg-file, then new width and height must be divisible by 32. |
| | | |
| | | **Note:** After training use such command for detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights` |
| | | |
| | | ### How to train tiny-yolo (to detect your custom objects): |
| | | |
| | | Do all the same steps as for the full yolo model as described above. With the exception of: |
| | | * Download default weights file for tiny-yolo-voc: http://pjreddie.com/media/files/tiny-yolo-voc.weights |
| | | * Get pre-trained weights tiny-yolo-voc.conv.13 using command: `darknet.exe partial cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.conv.13 13` |
| | | * Make your custom model `tiny-yolo-obj.cfg` based on `tiny-yolo-voc.cfg` instead of `yolo-voc.2.0.cfg` |
| | | * Start training: `darknet.exe detector train data/obj.data tiny-yolo-obj.cfg tiny-yolo-voc.conv.13` |
| | | * Download default weights file for yolov3-tiny: https://pjreddie.com/media/files/yolov3-tiny.weights |
| | | * Get pre-trained weights `yolov3-tiny.conv.15` using command: `darknet.exe partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15` |
| | | * Make your custom model `yolov3-tiny-obj.cfg` based on `cfg/yolov3-tiny_obj.cfg` instead of `yolov3.cfg` |
| | | * Start training: `darknet.exe detector train data/obj.data yolov3-tiny-obj.cfg yolov3-tiny.conv.15` |
| | | |
| | | For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd |
| | | If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights. |
| | |
| | | |
| | | Usually sufficient 2000 iterations for each class(object). But for a more precise definition when you should stop training, use the following manual: |
| | | |
| | | 1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.060730 avg**: |
| | | 1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.XXXXXXX avg**: |
| | | |
| | | > Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000, count: 8 |
| | | > Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000, count: 8 |
| | |
| | | |
| | | 2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them: |
| | | |
| | | For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect ojbects on any others images. You should get weights from **Early Stopping Point**: |
| | | For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect objects on any others images. You should get weights from **Early Stopping Point**: |
| | | |
| | |  |
| | | |
| | |
| | | |
| | | * **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf |
| | | |
| | | **mAP** is default metric of precision in the PascalVOC competition, **this is the same as AP50** metric in the MS COCO competition. |
| | | In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**. |
| | | |
| | |  |
| | |
| | | |
| | | 1. To calculate mAP (mean average precision) on PascalVOC-2007-test: |
| | | * Download PascalVOC dataset, install Python 3.x and get file `2007_test.txt` as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data |
| | | * Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\voc` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt` |
| | | * Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt` |
| | | * Remove symbol `#` from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4 |
| | | * Then there are 2 ways to get mAP: |
| | | 1. Using Darknet + Python: run the file `build/darknet/x64/calc_mAP_voc_py.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.9% |
| | |
| | | ## How to improve object detection: |
| | | |
| | | 1. Before training: |
| | | * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244) |
| | | |
| | | * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides |
| | | * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788) |
| | | |
| | | * for training on small objects, add the parameter `small_object=1` in the last layer [region] in your cfg-file |
| | | * increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision |
| | | |
| | | * recalculate anchors for your dataset for `width` and `height` from cfg-file: |
| | | `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416` |
| | | then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file |
| | | |
| | | * check that each object are mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, ...). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark |
| | | |
| | | * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 different images for each class or more, and you should train `2000*classes` iterations or more |
| | | |
| | | * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files) - use as many images of negative samples as there are images with objects |
| | | |
| | | * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file |
| | | |
| | | * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` in one of the penultimate convolutional layers, for example here: https://github.com/AlexeyAB/darknet/blob/cad4d1618fee74471d335314cb77070fee951a42/cfg/yolo-voc.2.0.cfg#L202 |
| | | * for training for small objects - set `layers = -1, 11` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720 |
| | | and set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717 |
| | | |
| | | * General rule - your training dataset should include such a set of relative sizes of objects that you want to detect: |
| | | |
| | | * `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width` |
| | | * `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height` |
| | | |
| | | * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` here: https://github.com/AlexeyAB/darknet/blob/6d44529cf93211c319813c90e0c1adb34426abe5/cfg/yolov3.cfg#L548 |
| | | |
| | | 2. After training - for detection: |
| | | |
| | | * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4) |
| | | * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9) |
| | | |
| | | * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution |
| | | * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3) |
| | | * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4) |
| | | |
| | | ## How to mark bounded boxes of objects and create annotation files: |
| | | |
| | | Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark |
| | | Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark |
| | | |
| | | With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 |
| | | With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 & v3 |
| | | |
| | | ## Using Yolo9000 |
| | | |