| | |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | set_learning_network(&net, net.learning_rate*10., net.momentum, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = 0; |
| | | int i = 6600; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | //normalize_data_rows(train); |
| | | translate_data_rows(train, -128); |
| | | scale_data_rows(train, 1./128); |
| | | normalize_data_rows(train); |
| | | //translate_data_rows(train, -128); |
| | | //scale_data_rows(train, 1./128); |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | |
| | | void test_correct_nist() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | test_learn_bias(*(convolutional_layer *)net.layers[0]); |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 1000/net.batch; |
| | | |
| | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | save_network(net, "cfg/nist_gpu.cfg"); |
| | | |
| | | gpu_index = -1; |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist.cfg"); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | save_network(net, "cfg/nist_cpu.cfg"); |
| | | } |
| | | |
| | | void test_correct_alexnet() |