| | |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5); |
| | | float scale = 1./sqrt(size*size*c); |
| | | //scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = .5; |
| | | layer->biases[i] = scale; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | layer->filters_cl = cl_make_array(layer->filters, c*n*size*size); |
| | | layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size); |
| | | layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size); |
| | | |
| | | layer->biases_cl = cl_make_array(layer->biases, n); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, n); |
| | | layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n); |
| | | |
| | | layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c); |
| | | layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c); |
| | | layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n); |
| | | layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n); |
| | | #endif |
| | |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = realloc(layer->col_image, |
| | | layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | layer->output = realloc(layer->output, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | layer->delta = realloc(layer->delta, |
| | |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | |
| | | im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_cpu(in, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | b += k*n; |
| | | c += n*m; |
| | | in += layer.c*layer.h*layer.w; |
| | | } |
| | | activate_array(layer.output, m*n*layer.batch, layer.activation); |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, float *delta) |
| | | void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); |
| | | |
| | | learn_bias_convolutional_layer(layer); |
| | | |
| | | float *a = layer.delta; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float *a = layer.delta + i*m*k; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | float *im = in+i*layer.c*layer.h*layer.w; |
| | | |
| | | im2col_cpu(im, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | a += m*k; |
| | | b += k*n; |
| | | } |
| | | |
| | | if(delta){ |
| | | m = layer.size*layer.size*layer.c; |
| | | k = layer.n; |
| | | n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | if(delta){ |
| | | a = layer.filters; |
| | | b = layer.delta + i*m*k; |
| | | c = layer.col_image; |
| | | |
| | | a = layer.filters; |
| | | b = layer.delta; |
| | | c = layer.col_image; |
| | | gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | b += k*n; |
| | | c += m*n; |
| | | col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w); |
| | | } |
| | | |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta); |
| | | } |
| | | } |
| | | |
| | |
| | | axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1); |
| | | axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, layer.momentum, layer.filter_updates, 1); |
| | | } |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | #define BLOCK 32 |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | |
| | | cl_kernel get_convolutional_learn_bias_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0); |
| | | kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK)); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | |
| | | { |
| | | int size = convolutional_out_height(layer) * convolutional_out_width(layer); |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_learn_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.n}; |
| | | const size_t global_size[] = {layer.n*BLOCK}; |
| | | const size_t local_size[] = {BLOCK}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | void test_learn_bias(convolutional_layer l) |
| | | { |
| | | int i; |
| | | int size = convolutional_out_height(l) * convolutional_out_width(l); |
| | | for(i = 0; i < size*l.batch*l.n; ++i){ |
| | | l.delta[i] = rand_uniform(); |
| | | } |
| | | for(i = 0; i < l.n; ++i){ |
| | | l.bias_updates[i] = rand_uniform(); |
| | | } |
| | | cl_write_array(l.delta_cl, l.delta, size*l.batch*l.n); |
| | | cl_write_array(l.bias_updates_cl, l.bias_updates, l.n); |
| | | float *gpu = calloc(l.n, sizeof(float)); |
| | | cl_read_array(l.bias_updates_cl, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | learn_bias_convolutional_layer_ongpu(l); |
| | | learn_bias_convolutional_layer(l); |
| | | cl_read_array(l.bias_updates_cl, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | } |
| | | |
| | | cl_kernel get_convolutional_bias_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "bias", 0); |
| | | kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK)); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | |
| | | int out_w = convolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.batch, layer.n*size}; |
| | | const size_t global_size[] = {layer.n*size, layer.batch}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0); |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | |
| | | |
| | | bias_output_gpu(layer); |
| | | |
| | | #ifdef TIMEIT |
| | | clock_t time = clock(); |
| | | printf("Forward\n"); |
| | | #endif |
| | | |
| | | im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl); |
| | | |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Im2col %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | #endif |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl); |
| | | cl_mem a = layer.filters_cl; |
| | | cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n); |
| | | cl_mem c = cl_sub_array(layer.output_cl, i*m*n, m*n); |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c,n); |
| | | clReleaseMemObject(b); |
| | | clReleaseMemObject(c); |
| | | cl_mem b = layer.col_image_cl; |
| | | cl_mem c = layer.output_cl; |
| | | gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n); |
| | | } |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Gemm %f\n", sec(clock()-time)); |
| | | #endif |
| | | activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation); |
| | | #ifdef TIMEIT |
| | | cl_read_array(layer.output_cl, layer.output, m*n*layer.batch); |
| | | #endif |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl) |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | |
| | | gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl); |
| | | learn_bias_convolutional_layer_ongpu(layer); |
| | | |
| | | if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = cl_sub_array(layer.delta_cl,i*m*k, m*k); |
| | | cl_mem b = cl_sub_array(layer.col_image_cl,i*k*n, k*n); |
| | | cl_mem a = layer.delta_cl; |
| | | cl_mem b = layer.col_image_cl; |
| | | cl_mem c = layer.filter_updates_cl; |
| | | |
| | | gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl); |
| | | gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n); |
| | | |
| | | clReleaseMemObject(a); |
| | | clReleaseMemObject(b); |
| | | } |
| | | //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch); |
| | | if(delta_cl){ |
| | | |
| | | if(delta_cl){ |
| | | m = layer.size*layer.size*layer.c; |
| | | k = layer.n; |
| | | n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = layer.filters_cl; |
| | | cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n); |
| | | cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n); |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.col_image_cl; |
| | | |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | clReleaseMemObject(b); |
| | | clReleaseMemObject(c); |
| | | gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k); |
| | | |
| | | col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl); |
| | | } |
| | | |
| | | scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1); |
| | | col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl); |
| | | } |
| | | } |
| | | |
| | |
| | | { |
| | | cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.n); |
| | | cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cl_write_array(layer.biases_cl, layer.biases, layer.n); |
| | | cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | void update_convolutional_layer_gpu(convolutional_layer layer) |
| | |
| | | axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1); |
| | | axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1); |
| | | axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1); |
| | | scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1); |
| | | pull_convolutional_layer(layer); |
| | | //pull_convolutional_layer(layer); |
| | | } |
| | | |
| | | |