| | |
| | | #include <math.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <assert.h> |
| | | |
| | | softmax_layer *make_softmax_layer(int batch, int inputs) |
| | | softmax_layer make_softmax_layer(int batch, int inputs, int groups) |
| | | { |
| | | fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); |
| | | softmax_layer *layer = calloc(1, sizeof(softmax_layer)); |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | layer->jacobian = calloc(inputs*inputs*batch, sizeof(float)); |
| | | assert(inputs%groups == 0); |
| | | fprintf(stderr, "softmax %4d\n", inputs); |
| | | softmax_layer l = {0}; |
| | | l.type = SOFTMAX; |
| | | l.batch = batch; |
| | | l.groups = groups; |
| | | l.inputs = inputs; |
| | | l.outputs = inputs; |
| | | l.output = calloc(inputs*batch, sizeof(float)); |
| | | l.delta = calloc(inputs*batch, sizeof(float)); |
| | | |
| | | l.forward = forward_softmax_layer; |
| | | l.backward = backward_softmax_layer; |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(layer->output, inputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); |
| | | l.forward_gpu = forward_softmax_layer_gpu; |
| | | l.backward_gpu = backward_softmax_layer_gpu; |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | #endif |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output) |
| | | { |
| | | int i,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | float sum = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i+b*layer.inputs]-largest); |
| | | } |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum); |
| | | int b; |
| | | for(b = 0; b < batch; ++b){ |
| | | int i; |
| | | int count = 0; |
| | | for(i = 0; i < hierarchy->groups; ++i){ |
| | | int group_size = hierarchy->group_size[i]; |
| | | softmax(input+b*inputs + count, group_size, temp, output+b*inputs + count); |
| | | count += group_size; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta) |
| | | void forward_softmax_layer(const softmax_layer l, network_state state) |
| | | { |
| | | int b; |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | if(l.softmax_tree){ |
| | | softmax_tree(state.input, batch, inputs, l.temperature, l.softmax_tree, l.output); |
| | | } else { |
| | | for(b = 0; b < batch; ++b){ |
| | | softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer l, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |
| | | for(i = 0; i < l.inputs*l.batch; ++i){ |
| | | state.delta[i] += l.delta[i]; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_softmax_layer_output(const softmax_layer layer) |
| | | { |
| | | cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); |
| | | } |
| | | |
| | | void forward_softmax_layer_gpu(const softmax_layer l, network_state state) |
| | | { |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | if(l.softmax_tree){ |
| | | int i; |
| | | int count = 0; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(state.input+count, group_size, inputs, batch, l.temperature, l.output_gpu + count); |
| | | count += group_size; |
| | | } |
| | | } else { |
| | | softmax_gpu(state.input, inputs, inputs, batch, l.temperature, l.output_gpu); |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer_gpu(const softmax_layer layer, network_state state) |
| | | { |
| | | axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | |
| | | #endif |