| | |
| | | #include "parser.h" |
| | | #include "option_list.h" |
| | | #include "blas.h" |
| | | #include "classifier.h" |
| | | #include <sys/time.h> |
| | | |
| | | #ifdef OPENCV |
| | |
| | | return options; |
| | | } |
| | | |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile) |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int imgs = net.batch; |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.min = net.w; |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.size = net.w; |
| | | |
| | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | /* |
| | | int u; |
| | | for(u = 0; u < net.batch; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | */ |
| | | /* |
| | | int u; |
| | | for(u = 0; u < net.batch; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | */ |
| | | |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(*net.seen%100 == 0){ |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, crop.data); |
| | | |
| | | if(resized.data != im.data) free_image(resized); |
| | | free_image(im); |
| | | free_image(resized); |
| | | free_image(crop); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | |
| | | flip_image(r); |
| | | p = network_predict(net, r.data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(r); |
| | | if(r.data != im.data) free_image(r); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int size = net.w; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, net.w, net.h); |
| | | float *X = im.data; |
| | | image im = load_image_color(input, 0, 0); |
| | | image r = resize_min(im, size); |
| | | resize_network(&net, r.w, r.h); |
| | | printf("%d %d\n", r.w, r.h); |
| | | |
| | | float *X = r.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, top, indexes); |
| | |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | if(r.data != im.data) free_image(r); |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | |
| | | void label_classifier(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "names", "data/labels.list"); |
| | | char *test_list = option_find_str(options, "test", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(test_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image resized = resize_min(im, net.w); |
| | | image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); |
| | | float *pred = network_predict(net, crop.data); |
| | | |
| | | if(resized.data != im.data) free_image(resized); |
| | | free_image(im); |
| | | free_image(crop); |
| | | int ind = max_index(pred, classes); |
| | | |
| | | printf("%s\n", labels[ind]); |
| | | } |
| | | } |
| | | |
| | | |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) |
| | | { |
| | | int curr = 0; |
| | |
| | | } |
| | | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | char *data = argv[3]; |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | |
| | | char *layer_s = (argc > 7) ? argv[7]: 0; |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |