| | |
| | | #include "connected_layer.h" |
| | | |
| | | //#include "old_conv.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | void test_visualize() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | srand(2222222); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | |
| | | scale_data_rows(train, 1./255); |
| | | train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | //printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | |
| | | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc); |
| | | free_data(train); |
| | |
| | | //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | //start=end; |
| | | /* |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | */ |
| | | */ |
| | | } |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void flip_network() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg"); |
| | | save_network(net, "cfg/voc_imagenet_rev.cfg"); |
| | | } |
| | | |
| | | void train_VOC() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_start.cfg"); |
| | |
| | | IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | normalize_array(im.data, im.h*im.w*im.c); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image_layer(net, 6); |
| | |
| | | free_image(out); |
| | | cvReleaseImage(&src); |
| | | } |
| | | void visualize_imagenet_topk(char *filename) |
| | | { |
| | | int i,j,k,l; |
| | | int topk = 10; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | float **score = calloc(num, sizeof(float *)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); |
| | | score[i] = calloc(topk, sizeof(float)); |
| | | } |
| | | |
| | | while(n){ |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | n = n->next; |
| | | if(im.h < 200 || im.w < 200) continue; |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | | int dw = (im.w - w)/w; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | image sub = get_sub_image(im, dh*i, dw*j, h, w); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float val = get_pixel(out, i, j, k); |
| | | //printf("%f, ", val); |
| | | image sub_c = copy_image(sub); |
| | | for(l = 0; l < topk; ++l){ |
| | | if(val > score[k][l]){ |
| | | float swap = score[k][l]; |
| | | score[k][l] = val; |
| | | val = swap; |
| | | |
| | | image swapi = vizs[k][l]; |
| | | vizs[k][l] = sub_c; |
| | | sub_c = swapi; |
| | | } |
| | | } |
| | | free_image(sub_c); |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | free_image(im); |
| | | //printf("\n"); |
| | | image grid = grid_images(vizs, num, topk); |
| | | show_image(grid, "IMAGENET Visualization"); |
| | | save_image(grid, "IMAGENET Grid"); |
| | | free_image(grid); |
| | | } |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_imagenet_features(char *filename) |
| | | { |
| | | int i,j,k; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image *vizs = calloc(num, sizeof(image)); |
| | | for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3); |
| | | while(n){ |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | | int dw = (im.w - w)/w; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | image sub = get_sub_image(im, dh*i, dw*j, h, w); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float val = get_pixel(out, i, j, k); |
| | | //printf("%f, ", val); |
| | | image sub_c = copy_image(sub); |
| | | scale_image(sub_c, val); |
| | | add_into_image(sub_c, vizs[k], 0, 0); |
| | | free_image(sub_c); |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | //printf("\n"); |
| | | show_images(vizs, 10, "IMAGENET Visualization"); |
| | | cvWaitKey(1000); |
| | | n = n->next; |
| | | } |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | |
| | | image out = get_network_image(net); |
| | | visualize_network(net); |
| | | cvWaitKey(1000); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void features_VOC_image(char *image_file, char *image_dir, char *out_dir) |
| | | { |
| | |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_visualize(); |
| | | //test_gpu_blas(); |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | |
| | | //test_full(); |
| | | //train_VOC(); |
| | | //features_VOC_image(argv[1], argv[2], argv[3]); |
| | | features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //visualize_imagenet_features("data/assira/train.list"); |
| | | visualize_imagenet_topk("data/VOC2011.list"); |
| | | //visualize_cat(); |
| | | //flip_network(); |
| | | //test_visualize(); |
| | | fprintf(stderr, "Success!\n"); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |