| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); |
| | | |
| | | char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"}; |
| | | |
| | | int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label) |
| | | { |
| | | int classes = 80; |
| | | int i; |
| | | |
| | | for(i = 0; i < num; ++i){ |
| | | int class = max_index(probs[i], classes); |
| | | float prob = probs[i][class]; |
| | | if(prob > thresh){ |
| | | int width = sqrt(prob)*5 + 1; |
| | | printf("%f %s\n", prob, coco_classes[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | box b = boxes[i]; |
| | | |
| | | int left = (b.x-b.w/2.)*im.w; |
| | | int right = (b.x+b.w/2.)*im.w; |
| | | int top = (b.y-b.h/2.)*im.h; |
| | | int bot = (b.y+b.h/2.)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | } |
| | | show_image(im, label); |
| | | } |
| | | image coco_labels[80]; |
| | | |
| | | void train_coco(char *cfgfile, char *weightfile) |
| | | { |
| | | //char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *train_images = "/home/pjreddie/data/coco/train.txt"; |
| | | //char *train_images = "/home/pjreddie/data/coco/train.txt"; |
| | | char *train_images = "data/coco.trainval.txt"; |
| | | //char *train_images = "data/bags.train.list"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int index = i*num + n; |
| | | int p_index = side*side*classes + i*num + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = side*side*(classes + num) + (i*num + n)*4; |
| | | boxes[index].x = (predictions[box_index + 0] + col) / side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row) / side * h; |
| | | boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h; |
| | | for(j = 0; j < classes; ++j){ |
| | | int class_index = i*classes; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | |
| | | int i=0; |
| | | int t; |
| | | |
| | | float thresh = .001; |
| | | float thresh = .01; |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
| | | convert_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free_image(val[t]); |
| | |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | float *predictions = network_predict(net, sized.data); |
| | | convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
| | | convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | |
| | | detection_layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | float nms = .4; |
| | | clock_t time; |
| | | char buff[256]; |
| | | char *input = buff; |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
| | | draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions"); |
| | | |
| | | show_image(sized, "resized"); |
| | | convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80); |
| | | save_image(im, "prediction"); |
| | | show_image(im, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | |
| | | void run_coco(int argc, char **argv) |
| | | { |
| | | int i; |
| | | for(i = 0; i < 80; ++i){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/labels/%s.png", coco_classes[i]); |
| | | coco_labels[i] = load_image_color(buff, 0, 0); |
| | | } |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, coco_labels, 80, frame_skip); |
| | | } |