Alexey
2017-02-14 76dbdae388a6c269cbf46d28e53fee8ce4ace94d
README.md
@@ -3,7 +3,7 @@
1. [How to use](#how-to-use)
2. [How to compile](#how-to-compile)
3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
4. [How to train (to detect your custom objects)](t#how-to-train-to-detect-your-custom-objects)
4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
5. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
@@ -69,8 +69,8 @@
1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
 Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam
 IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
    * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
    * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
3. Start Smart WebCam on your phone
@@ -146,7 +146,12 @@
1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc`: http://pjreddie.com/projects/pascal-voc-dataset-mirror/ will be created file `voc_label.py` and `\VOCdevkit\` dir
2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
    * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
    * http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
    * http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
    2.1 Download file `voc_label.py` to dir `build\darknet\x64\data\voc`: http://pjreddie.com/media/files/voc_label.py
3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
@@ -173,7 +178,7 @@
1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and:
  * change line `classes=20` to your number of objects
  * change line `filters=425` to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
  * change line #224 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
@@ -199,7 +204,7 @@
4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
5. Create `.txt`-file for each `.jpg`-image-file - with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
  Where: 
  * `<object-class>` - integer number of object from `0` to `(classes-1)`