| | |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | //layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | scale = .05; |
| | |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | //layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float)); |
| | | copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | int i; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
| | | } |
| | | int m = layer.inputs; |