| | |
| | | void test_convolutional_layer() |
| | | { |
| | | int i; |
| | | image dog = load_image("data/dog.jpg",256,256); |
| | | image dog = load_image("data/dog.jpg",224,224); |
| | | network net = parse_network_cfg("cfg/convolutional.cfg"); |
| | | // data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | // float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
| | | // float *y = calloc(net.batch*test.y.cols, sizeof(float)); |
| | | int in_size = get_network_input_size(net)*net.batch; |
| | | int del_size = get_network_output_size_layer(net, 0)*net.batch; |
| | | int size = get_network_output_size(net)*net.batch; |
| | | float *X = calloc(in_size, sizeof(float)); |
| | | float *X = calloc(in_size, sizeof(float)); |
| | | float *y = calloc(size, sizeof(float)); |
| | | for(i = 0; i < in_size; ++i){ |
| | | X[i] = dog.data[i%get_network_input_size(net)]; |
| | | } |
| | | // get_batch(test, net.batch, X, y); |
| | | clock_t start, end; |
| | | cl_mem input_cl = cl_make_array(X, in_size); |
| | | cl_mem truth_cl = cl_make_array(y, size); |
| | | |
| | | forward_network_gpu(net, input_cl, 1); |
| | | forward_network_gpu(net, input_cl, truth_cl, 1); |
| | | start = clock(); |
| | | forward_network_gpu(net, input_cl, 1); |
| | | forward_network_gpu(net, input_cl, truth_cl, 1); |
| | | end = clock(); |
| | | float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | printf("forward gpu: %f sec\n", gpu_sec); |
| | | start = clock(); |
| | | backward_network_gpu(net, input_cl); |
| | | end = clock(); |
| | | gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | printf("backward gpu: %f sec\n", gpu_sec); |
| | | //float gpu_cost = get_network_cost(net); |
| | | float *gpu_out = calloc(size, sizeof(float)); |
| | | memcpy(gpu_out, get_network_output(net), size*sizeof(float)); |
| | | |
| | | float *gpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | |
| | | /* |
| | | start = clock(); |
| | | forward_network(net, X, 1); |
| | | forward_network(net, X, y, 1); |
| | | backward_network(net, X); |
| | | float cpu_cost = get_network_cost(net); |
| | | end = clock(); |
| | | float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | float *cpu_out = calloc(size, sizeof(float)); |
| | | memcpy(cpu_out, get_network_output(net), size*sizeof(float)); |
| | | float *cpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | |
| | | float sum = 0; |
| | | for(i = 0; i < size; ++i) { |
| | | //printf("%f, %f\n", gpu_out[i], cpu_out[i]); |
| | | sum += pow(gpu_out[i] - cpu_out[i], 2); |
| | | float del_sum = 0; |
| | | for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); |
| | | for(i = 0; i < del_size; ++i) { |
| | | //printf("%f %f\n", cpu_del[i], gpu_del[i]); |
| | | del_sum += pow(cpu_del[i] - gpu_del[i], 2); |
| | | } |
| | | printf("gpu: %f sec, cpu: %f sec, diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, size); |
| | | printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost); |
| | | printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size); |
| | | */ |
| | | } |
| | | |
| | | void test_col2im() |
| | | { |
| | | float col[] = {1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2}; |
| | | float im[16] = {0}; |
| | | int batch = 1; |
| | | int channels = 1; |
| | | int height=4; |
| | | int width=4; |
| | | int ksize = 3; |
| | | int stride = 1; |
| | | int pad = 0; |
| | | col2im_gpu(col, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, im); |
| | | int i; |
| | | for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
| | | printf("\n"); |
| | | /* |
| | | float data_im[] = { |
| | | 1,2,3,4, |
| | | 5,6,7,8, |
| | | 9,10,11,12 |
| | | }; |
| | | float data_col[18] = {0}; |
| | | im2col_cpu(data_im, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, data_col) ; |
| | | for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
| | | printf("\n"); |
| | | */ |
| | | } |
| | | |
| | | #endif |
| | |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x, 0); |
| | | forward_network(net, x, 0, 0); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | |
| | | |
| | | void test_cifar10() |
| | | { |
| | | |
| | | network net = parse_network_cfg("cfg/cifar10_part5.cfg"); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | clock_t start = clock(), end; |
| | |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index], 1); |
| | | forward_network(net, m.vals[index], 0, 1); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i], 0); |
| | | forward_network(net, test.vals[i],0, 0); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | |
| | | //normalize_array(im.data, im.h*im.w*im.c); |
| | | translate_image(im, -144); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/(out.h-1); |
| | |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | |
| | | //test_ensemble(); |
| | | //test_nist_single(); |
| | | //test_nist(); |
| | | train_nist(); |
| | | //test_convolutional_layer(); |
| | | //train_nist(); |
| | | test_convolutional_layer(); |
| | | //test_col2im(); |
| | | //test_cifar10(); |
| | | //train_cifar10(); |
| | | //test_vince(); |