Joseph Redmon
2014-10-13 787d5345609459f21fd65d2d8b4fcd55201e21a1
src/connected_layer.c
@@ -7,58 +7,65 @@
#include <stdlib.h>
#include <string.h>
connected_layer *make_connected_layer(int batch, int inputs, int outputs, float dropout, ACTIVATION activation)
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
{
    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
    int i;
    connected_layer *layer = calloc(1, sizeof(connected_layer));
    layer->learning_rate = learning_rate;
    layer->momentum = momentum;
    layer->decay = decay;
    layer->inputs = inputs;
    layer->outputs = outputs;
    layer->batch=batch;
    layer->dropout = dropout;
    layer->output = calloc(batch*outputs, sizeof(float*));
    layer->delta = calloc(batch*outputs, sizeof(float*));
    layer->weight_updates = calloc(inputs*outputs, sizeof(float));
    layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
    //layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
    layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
    layer->weights = calloc(inputs*outputs, sizeof(float));
    float scale = 1./inputs;
    scale = .05;
    for(i = 0; i < inputs*outputs; ++i)
        layer->weights[i] = scale*(rand_uniform());
        layer->weights[i] = scale*2*(rand_uniform()-.5);
    layer->bias_updates = calloc(outputs, sizeof(float));
    layer->bias_adapt = calloc(outputs, sizeof(float));
    //layer->bias_adapt = calloc(outputs, sizeof(float));
    layer->bias_momentum = calloc(outputs, sizeof(float));
    layer->biases = calloc(outputs, sizeof(float));
    for(i = 0; i < outputs; ++i)
    for(i = 0; i < outputs; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = 1;
        }
    #ifdef GPU
    #endif
    layer->activation = activation;
    return layer;
}
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
void update_connected_layer(connected_layer layer)
{
    int i;
    for(i = 0; i < layer.outputs; ++i){
        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
        layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i];
        layer.biases[i] += layer.bias_momentum[i];
    }
    for(i = 0; i < layer.outputs*layer.inputs; ++i){
        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
        layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i];
        layer.weights[i] += layer.weight_momentum[i];
    }
    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
}
void forward_connected_layer(connected_layer layer, float *input, int train)
void forward_connected_layer(connected_layer layer, float *input)
{
    int i;
    if(!train) layer.dropout = 0;
    for(i = 0; i < layer.batch; ++i){
        memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float));
    }
@@ -69,7 +76,7 @@
    float *b = layer.weights;
    float *c = layer.output;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    activate_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.dropout);
    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
}
void backward_connected_layer(connected_layer layer, float *input, float *delta)