| | |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "matrix.h" |
| | | #include "server.h" |
| | | |
| | | #include <time.h> |
| | |
| | | } |
| | | } |
| | | |
| | | void train_detection_net() |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //srand(time(0)); |
| | | srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256); |
| | | //translate_data_rows(train, -144); |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[0]); |
| | | float *truth = train.y.vals[0]; |
| | | int j; |
| | | int r, c; |
| | | for(r = 0; r < 8; ++r){ |
| | | for(c = 0; c < 8; ++c){ |
| | | j = (r*8 + c) * 5; |
| | | if(truth[j]){ |
| | | int d = 256/8; |
| | | int y = r*d+truth[j+1]*d; |
| | | int x = c*d+truth[j+2]*d; |
| | | int h = truth[j+3]*256; |
| | | int w = truth[j+4]*256; |
| | | printf("%f %f %f %f\n", truth[j+1], truth[j+2], truth[j+3], truth[j+4]); |
| | | float amount[5]; |
| | | for(r = 0; r < side*side; ++r){ |
| | | for(j = 0; j < 5; ++j){ |
| | | if(box[r*5] > amount[j]) { |
| | | amount[j] = box[r*5]; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[0]; |
| | | for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | |
| | | void train_detection_net() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_jitter_random(imgs*net.batch, paths, plist->size, 256, 256, 7, 7, 256); |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | |
| | | { |
| | | float avg_loss = 1; |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_learning_network(&net, 0, 1, 0); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | int imgs = 1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | client_update(net, address); |
| | | printf("Updated: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | client_update(net, address); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.cfg"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs=1; |
| | |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | int splits = 50; |
| | | |
| | | for(i = 0; i < splits; ++i){ |
| | | time=clock(); |
| | | char **part = paths+(i*m/splits); |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | data val = load_data(part, num, labels, 1000, 256, 256); |
| | | data val = load_data(part, num, labels, 1000, 224, 224); |
| | | |
| | | normalize_data_rows(val); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float acc = network_accuracy_gpu(net, val); |
| | | avg_acc += acc; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); |
| | | float *acc = network_accuracies_gpu(net, val); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/(i+1), avg_top5/(i+1), sec(clock()-time), val.X.rows); |
| | | #endif |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | | void draw_detection(image im, float *box) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | for(r = 0; r < 8; ++r){ |
| | | for(c = 0; c < 8; ++c){ |
| | | j = (r*8 + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] > .01){ |
| | | int d = 256/8; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_detection() |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet.test"); |
| | |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions); |
| | | draw_detection(im, predictions, 7); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_init(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *filename = "data/test.jpg"; |
| | | |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | float *X = im.data; |
| | | forward_network(net, X, 0, 1); |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | int size = output.h*output.w*output.c; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | int size = layer.outputs; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Connected, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | } |
| | | free_image(im); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | |
| | | |
| | | } |
| | | |
| | | void test_nist() |
| | | void test_nist(char *path) |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist_final.cfg"); |
| | | network net = parse_network_cfg(path); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(test); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy_multi(net, test,16); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | end = clock(); |
| | | printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | int iters = 60000/net.batch + 1; |
| | | //iters = 6000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | float test_acc = 0; |
| | | if(count%1 == 0) test_acc = network_accuracy_gpu(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | float acc = matrix_topk_accuracy(test.y, partial,1); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | float acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.server"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | void test_client() |
| | |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "client")) train_nist_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |