| | |
| | | #include "convolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | int is_convolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | | void free_section(section *s) |
| | |
| | | free(s); |
| | | } |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, network net, int count) |
| | | convolutional_layer *parse_convolutional(list *options, network *net, int count) |
| | | { |
| | | int i; |
| | | int h,w,c; |
| | | float learning_rate, momentum, decay; |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); |
| | | convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | |
| | | curr = next+1; |
| | | } |
| | | } |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | if(biases){ |
| | | char *curr = biases; |
| | | char *next = biases; |
| | | int done = 0; |
| | | for(i = 0; i < n && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->biases[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | if(weights){ |
| | | char *curr = weights; |
| | | char *next = weights; |
| | | int done = 0; |
| | | for(i = 0; i < c*n*size*size && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->filters[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, network net, int count) |
| | | connected_layer *parse_connected(list *options, network *net, int count) |
| | | { |
| | | int i; |
| | | int input; |
| | | float learning_rate, momentum, decay; |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(input, output, activation); |
| | | connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | |
| | | return layer; |
| | | } |
| | | |
| | | softmax_layer *parse_softmax(list *options, network net, int count) |
| | | softmax_layer *parse_softmax(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | softmax_layer *layer = make_softmax_layer(input); |
| | | softmax_layer *layer = make_softmax_layer(net->batch, input); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer *parse_maxpool(list *options, network net, int count) |
| | | maxpool_layer *parse_maxpool(list *options, network *net, int count) |
| | | { |
| | | int h,w,c; |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); |
| | | maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer *parse_dropout(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | | float probability = option_find_float(options, "probability", .5); |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | dropout_layer *layer = make_dropout_layer(net->batch,input,probability); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | normalization_layer *parse_normalization(list *options, network *net, int count) |
| | | { |
| | | int h,w,c; |
| | | int size = option_find_int(options, "size",1); |
| | | float alpha = option_find_float(options, "alpha", 0.); |
| | | float beta = option_find_float(options, "beta", 1.); |
| | | float kappa = option_find_float(options, "kappa", 1.); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | network net = make_network(sections->size); |
| | | network net = make_network(sections->size, 0); |
| | | |
| | | node *n = sections->front; |
| | | int count = 0; |
| | |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | if(is_convolutional(s)){ |
| | | convolutional_layer *layer = parse_convolutional(options, net, count); |
| | | convolutional_layer *layer = parse_convolutional(options, &net, count); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | }else if(is_connected(s)){ |
| | | connected_layer *layer = parse_connected(options, net, count); |
| | | connected_layer *layer = parse_connected(options, &net, count); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, net, count); |
| | | softmax_layer *layer = parse_softmax(options, &net, count); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | }else if(is_maxpool(s)){ |
| | | maxpool_layer *layer = parse_maxpool(options, net, count); |
| | | maxpool_layer *layer = parse_maxpool(options, &net, count); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | }else if(is_normalization(s)){ |
| | | normalization_layer *layer = parse_normalization(options, &net, count); |
| | | net.types[count] = NORMALIZATION; |
| | | net.layers[count] = layer; |
| | | }else if(is_dropout(s)){ |
| | | dropout_layer *layer = parse_dropout(options, &net, count); |
| | | net.types[count] = DROPOUT; |
| | | net.layers[count] = layer; |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | |
| | | return (strcmp(s->type, "[max]")==0 |
| | | || strcmp(s->type, "[maxpool]")==0); |
| | | } |
| | | int is_dropout(section *s) |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | | return (strcmp(s->type, "[soft]")==0 |
| | | || strcmp(s->type, "[softmax]")==0); |
| | | } |
| | | int is_normalization(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrnorm]")==0 |
| | | || strcmp(s->type, "[localresponsenormalization]")==0); |
| | | } |
| | | |
| | | int read_option(char *s, list *options) |
| | | { |
| | |
| | | return sections; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "pad=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, l->pad, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\n" |
| | | "input=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch, l->inputs, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); |
| | | } |
| | | |
| | | void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[localresponsenormalization]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\n" |
| | | "alpha=%g\n" |
| | | "beta=%g\n" |
| | | "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[softmax]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |