| | |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | int convolutional_out_height(convolutional_layer layer) |
| | | { |
| | | int h = layer.h; |
| | | if (!layer.pad) h -= layer.size; |
| | | else h -= 1; |
| | | return h/layer.stride + 1; |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer layer) |
| | | { |
| | | int w = layer.w; |
| | | if (!layer.pad) w -= layer.size; |
| | | else w -= 1; |
| | | return w/layer.stride + 1; |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.output); |
| | | return float_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.delta); |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int out_h,out_w; |
| | | size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | layer->pad = pad; |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 2./(size*size); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale; |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | scale = .01; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | | layer->biases[i] = .5; |
| | | } |
| | | out_h = (h-size)/stride + 1; |
| | | out_w = (w-size)/stride + 1; |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(double)); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->filters_cl = cl_make_array(layer->filters, c*n*size*size); |
| | | layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size); |
| | | layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size); |
| | | |
| | | layer->biases_cl = cl_make_array(layer->biases, n); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, n); |
| | | layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n); |
| | | |
| | | layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c); |
| | | layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n); |
| | | layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n); |
| | | #endif |
| | | layer->activation = activation; |
| | | layer->out_h = out_h; |
| | | layer->out_w = out_w; |
| | | |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | srand(0); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, double *in) |
| | | void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c) |
| | | { |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | memset(layer.output, 0, m*n*sizeof(double)); |
| | | |
| | | double *a = layer.filters; |
| | | double *b = layer.col_image; |
| | | double *c = layer.output; |
| | | |
| | | im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | |
| | | layer->col_image = realloc(layer->col_image, |
| | | layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | layer->output = realloc(layer->output, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | layer->delta = realloc(layer->delta, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | } |
| | | |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | void bias_output(const convolutional_layer layer) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | int i,j,b; |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | for(j = 0; j < out_h*out_w; ++j){ |
| | | layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in) |
| | | { |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | int i; |
| | | |
| | | bias_output(layer); |
| | | |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = out_h*out_w; |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | |
| | | im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | b += k*n; |
| | | c += n*m; |
| | | } |
| | | activate_array(layer.output, m*n*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void learn_bias_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i,j; |
| | | int size = layer.out_h*layer.out_w; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | double sum = 0; |
| | | for(j = 0; j < size; ++j){ |
| | | sum += layer.delta[j+i*size]; |
| | | int i,b; |
| | | int size = convolutional_out_height(layer) |
| | | *convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size); |
| | | } |
| | | layer.bias_updates[i] += sum/size; |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer) |
| | | void backward_convolutional_layer(convolutional_layer layer, float *delta) |
| | | { |
| | | gradient_delta_convolutional_layer(layer); |
| | | learn_bias_convolutional_layer(layer); |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); |
| | | learn_bias_convolutional_layer(layer); |
| | | |
| | | double *a = layer.delta; |
| | | double *b = layer.col_image; |
| | | double *c = layer.filter_updates; |
| | | float *a = layer.delta; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | a += m*k; |
| | | b += k*n; |
| | | } |
| | | |
| | | if(delta){ |
| | | m = layer.size*layer.size*layer.c; |
| | | k = layer.n; |
| | | n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | a = layer.filters; |
| | | b = layer.delta; |
| | | c = layer.col_image; |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | b += k*n; |
| | | c += m*n; |
| | | } |
| | | |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | void update_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.biases[i] += step*layer.bias_updates[i]; |
| | | layer.bias_updates[i] *= momentum; |
| | | } |
| | | for(i = 0; i < size; ++i){ |
| | | layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]); |
| | | layer.filter_updates[i] *= momentum; |
| | | } |
| | | } |
| | | /* |
| | | axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta) |
| | | { |
| | | image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | rotate_image(layer.kernels[i]); |
| | | } |
| | | |
| | | zero_image(in_delta); |
| | | upsample_image(out_delta, layer.stride, layer.upsampled); |
| | | for(j = 0; j < in_delta.c; ++j){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge); |
| | | } |
| | | } |
| | | |
| | | for(i = 0; i < layer.n; ++i){ |
| | | rotate_image(layer.kernels[i]); |
| | | } |
| | | scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1); |
| | | axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, layer.momentum, layer.filter_updates, 1); |
| | | } |
| | | |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) |
| | | + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | layer.bias_updates[i] = 0; |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) |
| | | + momentum*layer.kernel_momentum[i].data[j]; |
| | | layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR); |
| | | double input[] = {1,2,3,4, |
| | | 5,6,7,8, |
| | | 9,10,11,12, |
| | | 13,14,15,16}; |
| | | double filter[] = {.5, 0, .3, |
| | | 0 , 1, 0, |
| | | .2 , 0, 1}; |
| | | double delta[] = {1, 2, |
| | | 3, 4}; |
| | | l.filters = filter; |
| | | forward_convolutional_layer(l, input); |
| | | l.delta = delta; |
| | | learn_convolutional_layer(l); |
| | | image filter_updates = double_to_image(3,3,1,l.filter_updates); |
| | | print_image(filter_updates); |
| | | } |
| | | |
| | | image get_convolutional_filter(convolutional_layer layer, int i) |
| | | { |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return double_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window) |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | int size = layer.size; |
| | | h = size; |
| | | w = (size + border) * layer.n - border; |
| | | c = layer.c; |
| | | if(c != 3 || !color){ |
| | | h = (h+border)*c - border; |
| | | c = 1; |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image k = get_convolutional_filter(layer, i); |
| | | //printf("%f ** ", layer.biases[i]); |
| | | //print_image(k); |
| | | image copy = copy_image(k); |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | //set_pixel(copy,0,0,j,layer.biases[i]); |
| | | } |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < k.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(k, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | image delta = get_convolutional_delta(layer); |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_image(layer); |
| | | image dc = collapse_image_layers(delta, 1); |
| | | char buff[256]; |
| | | sprintf(buff, "%s: Delta", window); |
| | | show_image(dc, buff); |
| | | sprintf(buff, "%s: Output", window); |
| | | //show_image(dc, buff); |
| | | //save_image(dc, buff); |
| | | free_image(dc); |
| | | show_image(filters, window); |
| | | free_image(filters); |
| | | return single_filters; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | cl_kernel get_convolutional_learn_bias_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void learn_bias_convolutional_layer_ongpu(convolutional_layer layer) |
| | | { |
| | | int size = convolutional_out_height(layer) * convolutional_out_width(layer); |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_learn_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.n}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | cl_kernel get_convolutional_bias_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "bias", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void bias_output_gpu(const convolutional_layer layer) |
| | | { |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.n*size, layer.batch}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | //#define TIMEIT |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer); |
| | | |
| | | #ifdef TIMEIT |
| | | clock_t time = clock(); |
| | | printf("Forward\n"); |
| | | #endif |
| | | |
| | | im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl); |
| | | |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Im2col %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | #endif |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = layer.filters_cl; |
| | | cl_mem b = layer.col_image_cl; |
| | | cl_mem c = layer.output_cl; |
| | | gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n); |
| | | } |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Gemm %f\n", sec(clock()-time)); |
| | | #endif |
| | | activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation); |
| | | #ifdef TIMEIT |
| | | cl_read_array(layer.output_cl, layer.output, m*n*layer.batch); |
| | | #endif |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl); |
| | | learn_bias_convolutional_layer_ongpu(layer); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = layer.delta_cl; |
| | | cl_mem b = layer.col_image_cl; |
| | | cl_mem c = layer.filter_updates_cl; |
| | | |
| | | gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n); |
| | | } |
| | | |
| | | if(delta_cl){ |
| | | m = layer.size*layer.size*layer.c; |
| | | k = layer.n; |
| | | n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = layer.filters_cl; |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.col_image_cl; |
| | | |
| | | gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n); |
| | | } |
| | | |
| | | scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1); |
| | | col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl); |
| | | } |
| | | } |
| | | |
| | | void pull_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.n); |
| | | } |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cl_write_array(layer.biases_cl, layer.biases, layer.n); |
| | | } |
| | | |
| | | void update_convolutional_layer_gpu(convolutional_layer layer) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1); |
| | | axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1); |
| | | scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1); |
| | | pull_convolutional_layer(layer); |
| | | } |
| | | |
| | | |
| | | #endif |
| | | |