| | |
| | | #include "parser.h" |
| | | #include "activations.h" |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "freeweight_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_freeweight(section *s); |
| | | int is_softmax(section *s); |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_normalization(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, network *net, int count) |
| | | { |
| | | int i; |
| | | int h,w,c; |
| | | float learning_rate, momentum, decay; |
| | | int n = option_find_int(options, "filters",1); |
| | |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | | char *next = data; |
| | | for(i = 0; i < n; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->biases[i]); |
| | | curr = next+1; |
| | | } |
| | | for(i = 0; i < c*n*size*size; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->filters[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, n); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | push_convolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, network *net, int count) |
| | | { |
| | | int i; |
| | | int input; |
| | | float learning_rate, momentum, decay; |
| | | int output = option_find_int(options, "output",1); |
| | |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | | char *next = data; |
| | | for(i = 0; i < output; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->biases[i]); |
| | | curr = next+1; |
| | | } |
| | | for(i = 0; i < input*output; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->weights[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | #ifdef GPU |
| | | push_connected_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer *parse_cost(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | cost_layer *layer = make_cost_layer(net->batch, input); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer *parse_crop(list *options, network *net, int count) |
| | | { |
| | | float learning_rate, momentum, decay; |
| | |
| | | return layer; |
| | | } |
| | | |
| | | freeweight_layer *parse_freeweight(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | freeweight_layer *layer = make_freeweight_layer(net->batch,input); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer *parse_dropout(list *options, network *net, int count) |
| | | { |
| | | int input; |
| | |
| | | crop_layer *layer = parse_crop(options, &net, count); |
| | | net.types[count] = CROP; |
| | | net.layers[count] = layer; |
| | | }else if(is_cost(s)){ |
| | | cost_layer *layer = parse_cost(options, &net, count); |
| | | net.types[count] = COST; |
| | | net.layers[count] = layer; |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, &net, count); |
| | | net.types[count] = SOFTMAX; |
| | |
| | | dropout_layer *layer = parse_dropout(options, &net, count); |
| | | net.types[count] = DROPOUT; |
| | | net.layers[count] = layer; |
| | | }else if(is_freeweight(s)){ |
| | | freeweight_layer *layer = parse_freeweight(options, &net, count); |
| | | net.types[count] = FREEWEIGHT; |
| | | net.layers[count] = layer; |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | | } |
| | | int is_cost(section *s) |
| | | { |
| | | return (strcmp(s->type, "[cost]")==0); |
| | | } |
| | | int is_convolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conv]")==0 |
| | |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | int is_freeweight(section *s) |
| | | { |
| | | return (strcmp(s->type, "[freeweight]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[freeweight]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs); |
| | | } |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[dropout]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | } |
| | | fprintf(fp, "probability=%g\n\n", l->probability); |
| | | } |
| | | |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
| | | { |
| | | int i; |
| | |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[cost]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | |
| | | print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == FREEWEIGHT) |
| | | print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DROPOUT) |
| | | print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == COST) |
| | | print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i); |
| | | } |
| | | fclose(fp); |
| | | } |