| | |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case FREEWEIGHT: |
| | | return "freeweight"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | |
| | | |
| | | network make_network(int n, int batch) |
| | | { |
| | | network net; |
| | |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | net.seen = 0; |
| | | #ifdef GPU |
| | | net.input_cl = calloc(1, sizeof(cl_mem)); |
| | | net.truth_cl = calloc(1, sizeof(cl_mem)); |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | | #endif |
| | | return net; |
| | | } |
| | |
| | | if(!train) continue; |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | if(!train) continue; |
| | | freeweight_layer layer = *(freeweight_layer *)net.layers[i]; |
| | | forward_freeweight_layer(layer, input); |
| | | //freeweight_layer layer = *(freeweight_layer *)net.layers[i]; |
| | | //forward_freeweight_layer(layer, input); |
| | | } |
| | | //char buff[256]; |
| | | //sprintf(buff, "layer %d", i); |
| | | //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff); |
| | | } |
| | | } |
| | | |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | //secret_update_connected_layer((connected_layer *)net.layers[i]); |
| | | update_connected_layer(layer); |
| | | } |
| | | } |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_delta_layer(net, i-1); |
| | |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | forward_network(net, x, y, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | backward_network(net, x); |
| | | float error = get_network_cost(net); |
| | | update_network(net); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network(network net, data d) |
| | | { |
| | | int batch = net.batch; |
| | | int n = d.X.rows / batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network_data_cpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | void train_network(network net, data d) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | | } |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | void set_learning_network(network *net, float rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CROP){ |
| | | crop_layer *layer = (crop_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | forward_network(net, input, 0, 0); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | |
| | | } |
| | | } |
| | | |
| | | void compare_networks(network n1, network n2, data test) |
| | | { |
| | | matrix g1 = network_predict_data(n1, test); |
| | | matrix g2 = network_predict_data(n2, test); |
| | | int i; |
| | | int a,b,c,d; |
| | | a = b = c = d = 0; |
| | | for(i = 0; i < g1.rows; ++i){ |
| | | int truth = max_index(test.y.vals[i], test.y.cols); |
| | | int p1 = max_index(g1.vals[i], g1.cols); |
| | | int p2 = max_index(g2.vals[i], g2.cols); |
| | | if(p1 == truth){ |
| | | if(p2 == truth) ++d; |
| | | else ++c; |
| | | }else{ |
| | | if(p2 == truth) ++b; |
| | | else ++a; |
| | | } |
| | | } |
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
| | | float num = pow((abs(b - c) - 1.), 2.); |
| | | float den = b + c; |
| | | printf("%f\n", num/den); |
| | | } |
| | | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |