| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator) |
| | | connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation) |
| | | { |
| | | printf("Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | int i; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | connected_layer l = {0}; |
| | | l.type = CONNECTED; |
| | | |
| | | layer->output = calloc(outputs, sizeof(double*)); |
| | | layer->delta = calloc(outputs, sizeof(double*)); |
| | | l.inputs = inputs; |
| | | l.outputs = outputs; |
| | | l.batch=batch; |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(double)); |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = .01*(.5 - (double)rand()/RAND_MAX); |
| | | l.output = calloc(batch*outputs, sizeof(float*)); |
| | | l.delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(double)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(double)); |
| | | layer->biases = calloc(outputs, sizeof(double)); |
| | | for(i = 0; i < outputs; ++i) |
| | | layer->biases[i] = 1; |
| | | l.weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | l.bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | if(activator == SIGMOID){ |
| | | layer->activation = sigmoid_activation; |
| | | layer->gradient = sigmoid_gradient; |
| | | }else if(activator == RELU){ |
| | | layer->activation = relu_activation; |
| | | layer->gradient = relu_gradient; |
| | | }else if(activator == IDENTITY){ |
| | | layer->activation = identity_activation; |
| | | layer->gradient = identity_gradient; |
| | | l.weights = calloc(outputs*inputs, sizeof(float)); |
| | | l.biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | //float scale = 1./sqrt(inputs); |
| | | float scale = sqrt(2./inputs); |
| | | for(i = 0; i < outputs*inputs; ++i){ |
| | | l.weights[i] = 2*scale*rand_uniform() - scale; |
| | | } |
| | | |
| | | return layer; |
| | | for(i = 0; i < outputs; ++i){ |
| | | l.biases[i] = scale; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); |
| | | l.biases_gpu = cuda_make_array(l.biases, outputs); |
| | | |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, outputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.delta, outputs*batch); |
| | | #endif |
| | | l.activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return l; |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = layer.activation(layer.output[i]); |
| | | } |
| | | axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.outputs, momentum, l.bias_updates, 1); |
| | | |
| | | axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); |
| | | } |
| | | |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | void forward_connected_layer(connected_layer l, network_state state) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_updates[i] += layer.delta[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j]; |
| | | } |
| | | int i; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1); |
| | | } |
| | | int m = l.batch; |
| | | int k = l.inputs; |
| | | int n = l.outputs; |
| | | float *a = state.input; |
| | | float *b = l.weights; |
| | | float *c = l.output; |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | void backward_connected_layer(connected_layer l, network_state state) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i] - decay*layer.biases[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int index = i*layer.inputs+j; |
| | | layer.weight_momentum[index] = step*(layer.weight_updates[index] - decay*layer.weights[index]) + momentum*layer.weight_momentum[index]; |
| | | layer.weights[index] += layer.weight_momentum[index]; |
| | | } |
| | | int i; |
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.inputs; |
| | | float *a = l.delta; |
| | | float *b = state.input; |
| | | float *c = l.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = l.batch; |
| | | k = l.outputs; |
| | | n = l.inputs; |
| | | |
| | | a = l.delta; |
| | | b = l.weights; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer l) |
| | | { |
| | | int i, j; |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | double grad = layer.gradient(input[j]); |
| | | delta[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | delta[j] *= grad; |
| | | } |
| | | cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
| | | cuda_pull_array(l.biases_gpu, l.biases, l.outputs); |
| | | cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
| | | cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer l) |
| | | { |
| | | cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
| | | cuda_push_array(l.biases_gpu, l.biases, l.outputs); |
| | | cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
| | | cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
| | | scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
| | | axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
| | | scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1); |
| | | } |
| | | int m = l.batch; |
| | | int k = l.inputs; |
| | | int n = l.outputs; |
| | | float * a = state.input; |
| | | float * b = l.weights_gpu; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | |
| | | /* |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | float avg = mean_array(l.output, l.outputs*l.batch); |
| | | printf("%f\n", avg); |
| | | */ |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.inputs; |
| | | float * a = l.delta_gpu; |
| | | float * b = state.input; |
| | | float * c = l.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = l.batch; |
| | | k = l.outputs; |
| | | n = l.inputs; |
| | | |
| | | a = l.delta_gpu; |
| | | b = l.weights_gpu; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | #endif |