| | |
| | | #include "activations.h" |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "box.h" |
| | | #include "cuda.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | #include <assert.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | int get_detection_layer_locations(detection_layer l) |
| | | { |
| | | return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness)); |
| | | } |
| | | |
| | | int get_detection_layer_output_size(detection_layer l) |
| | | { |
| | | return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords); |
| | | } |
| | | |
| | | detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness) |
| | | detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) |
| | | { |
| | | detection_layer l = {0}; |
| | | l.type = DETECTION; |
| | | |
| | | |
| | | l.n = n; |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.objectness = objectness; |
| | | l.background = background; |
| | | l.joint = joint; |
| | | l.side = side; |
| | | assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); |
| | | l.cost = calloc(1, sizeof(float)); |
| | | l.does_cost=1; |
| | | int outputs = get_detection_layer_output_size(l); |
| | | l.outputs = outputs; |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | l.output_gpu = cuda_make_array(0, batch*outputs); |
| | | l.delta_gpu = cuda_make_array(0, batch*outputs); |
| | | #endif |
| | | l.outputs = l.inputs; |
| | | l.truths = l.side*l.side*(1+l.coords+l.classes); |
| | | l.output = calloc(batch*l.outputs, sizeof(float)); |
| | | l.delta = calloc(batch*l.outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Detection Layer\n"); |
| | | srand(0); |
| | |
| | | return l; |
| | | } |
| | | |
| | | typedef struct{ |
| | | float dx, dy, dw, dh; |
| | | } dbox; |
| | | |
| | | dbox derivative(box a, box b) |
| | | { |
| | | dbox d; |
| | | d.dx = 0; |
| | | d.dw = 0; |
| | | float l1 = a.x - a.w/2; |
| | | float l2 = b.x - b.w/2; |
| | | if (l1 > l2){ |
| | | d.dx -= 1; |
| | | d.dw += .5; |
| | | } |
| | | float r1 = a.x + a.w/2; |
| | | float r2 = b.x + b.w/2; |
| | | if(r1 < r2){ |
| | | d.dx += 1; |
| | | d.dw += .5; |
| | | } |
| | | if (l1 > r2) { |
| | | d.dx = -1; |
| | | d.dw = 0; |
| | | } |
| | | if (r1 < l2){ |
| | | d.dx = 1; |
| | | d.dw = 0; |
| | | } |
| | | |
| | | d.dy = 0; |
| | | d.dh = 0; |
| | | float t1 = a.y - a.h/2; |
| | | float t2 = b.y - b.h/2; |
| | | if (t1 > t2){ |
| | | d.dy -= 1; |
| | | d.dh += .5; |
| | | } |
| | | float b1 = a.y + a.h/2; |
| | | float b2 = b.y + b.h/2; |
| | | if(b1 < b2){ |
| | | d.dy += 1; |
| | | d.dh += .5; |
| | | } |
| | | if (t1 > b2) { |
| | | d.dy = -1; |
| | | d.dh = 0; |
| | | } |
| | | if (b1 < t2){ |
| | | d.dy = 1; |
| | | d.dh = 0; |
| | | } |
| | | return d; |
| | | } |
| | | |
| | | float overlap(float x1, float w1, float x2, float w2) |
| | | { |
| | | float l1 = x1 - w1/2; |
| | | float l2 = x2 - w2/2; |
| | | float left = l1 > l2 ? l1 : l2; |
| | | float r1 = x1 + w1/2; |
| | | float r2 = x2 + w2/2; |
| | | float right = r1 < r2 ? r1 : r2; |
| | | return right - left; |
| | | } |
| | | |
| | | float box_intersection(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w < 0 || h < 0) return 0; |
| | | float area = w*h; |
| | | return area; |
| | | } |
| | | |
| | | float box_union(box a, box b) |
| | | { |
| | | float i = box_intersection(a, b); |
| | | float u = a.w*a.h + b.w*b.h - i; |
| | | return u; |
| | | } |
| | | |
| | | float box_iou(box a, box b) |
| | | { |
| | | return box_intersection(a, b)/box_union(a, b); |
| | | } |
| | | |
| | | dbox dintersect(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | dbox dover = derivative(a, b); |
| | | dbox di; |
| | | |
| | | di.dw = dover.dw*h; |
| | | di.dx = dover.dx*h; |
| | | di.dh = dover.dh*w; |
| | | di.dy = dover.dy*w; |
| | | |
| | | return di; |
| | | } |
| | | |
| | | dbox dunion(box a, box b) |
| | | { |
| | | dbox du; |
| | | |
| | | dbox di = dintersect(a, b); |
| | | du.dw = a.h - di.dw; |
| | | du.dh = a.w - di.dh; |
| | | du.dx = -di.dx; |
| | | du.dy = -di.dy; |
| | | |
| | | return du; |
| | | } |
| | | |
| | | dbox diou(box a, box b); |
| | | |
| | | void test_dunion() |
| | | { |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.0001, 0, 1, 1}; |
| | | box dya= {0, 0+.0001, 1, 1}; |
| | | box dwa= {0, 0, 1+.0001, 1}; |
| | | box dha= {0, 0, 1, 1+.0001}; |
| | | |
| | | box b = {.5, .5, .2, .2}; |
| | | dbox di = dunion(a,b); |
| | | printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
| | | float inter = box_union(a, b); |
| | | float xinter = box_union(dxa, b); |
| | | float yinter = box_union(dya, b); |
| | | float winter = box_union(dwa, b); |
| | | float hinter = box_union(dha, b); |
| | | xinter = (xinter - inter)/(.0001); |
| | | yinter = (yinter - inter)/(.0001); |
| | | winter = (winter - inter)/(.0001); |
| | | hinter = (hinter - inter)/(.0001); |
| | | printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
| | | } |
| | | void test_dintersect() |
| | | { |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.0001, 0, 1, 1}; |
| | | box dya= {0, 0+.0001, 1, 1}; |
| | | box dwa= {0, 0, 1+.0001, 1}; |
| | | box dha= {0, 0, 1, 1+.0001}; |
| | | |
| | | box b = {.5, .5, .2, .2}; |
| | | dbox di = dintersect(a,b); |
| | | printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
| | | float inter = box_intersection(a, b); |
| | | float xinter = box_intersection(dxa, b); |
| | | float yinter = box_intersection(dya, b); |
| | | float winter = box_intersection(dwa, b); |
| | | float hinter = box_intersection(dha, b); |
| | | xinter = (xinter - inter)/(.0001); |
| | | yinter = (yinter - inter)/(.0001); |
| | | winter = (winter - inter)/(.0001); |
| | | hinter = (hinter - inter)/(.0001); |
| | | printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
| | | } |
| | | |
| | | void test_box() |
| | | { |
| | | test_dintersect(); |
| | | test_dunion(); |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.00001, 0, 1, 1}; |
| | | box dya= {0, 0+.00001, 1, 1}; |
| | | box dwa= {0, 0, 1+.00001, 1}; |
| | | box dha= {0, 0, 1, 1+.00001}; |
| | | |
| | | box b = {.5, 0, .2, .2}; |
| | | |
| | | float iou = box_iou(a,b); |
| | | iou = (1-iou)*(1-iou); |
| | | printf("%f\n", iou); |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh); |
| | | |
| | | float xiou = box_iou(dxa, b); |
| | | float yiou = box_iou(dya, b); |
| | | float wiou = box_iou(dwa, b); |
| | | float hiou = box_iou(dha, b); |
| | | xiou = ((1-xiou)*(1-xiou) - iou)/(.00001); |
| | | yiou = ((1-yiou)*(1-yiou) - iou)/(.00001); |
| | | wiou = ((1-wiou)*(1-wiou) - iou)/(.00001); |
| | | hiou = ((1-hiou)*(1-hiou) - iou)/(.00001); |
| | | printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou); |
| | | } |
| | | |
| | | dbox diou(box a, box b) |
| | | { |
| | | float u = box_union(a,b); |
| | | float i = box_intersection(a,b); |
| | | dbox di = dintersect(a,b); |
| | | dbox du = dunion(a,b); |
| | | dbox dd = {0,0,0,0}; |
| | | |
| | | if(i <= 0 || 1) { |
| | | dd.dx = b.x - a.x; |
| | | dd.dy = b.y - a.y; |
| | | dd.dw = b.w - a.w; |
| | | dd.dh = b.h - a.h; |
| | | return dd; |
| | | } |
| | | |
| | | dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); |
| | | dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); |
| | | dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); |
| | | dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); |
| | | return dd; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | int locations = get_detection_layer_locations(l); |
| | | int locations = l.side*l.side; |
| | | int i,j; |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]); |
| | | float scale = 1; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if(l.objectness){ |
| | | l.output[out_i++] = 1-state.input[in_i++]; |
| | | scale = mask; |
| | | } |
| | | else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; |
| | | |
| | | for(j = 0; j < l.classes; ++j){ |
| | | l.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | if(l.objectness){ |
| | | |
| | | }else if(l.background){ |
| | | softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); |
| | | activate_array(state.input+in_i, l.coords, LOGISTIC); |
| | | } |
| | | for(j = 0; j < l.coords; ++j){ |
| | | l.output[out_i++] = mask*state.input[in_i++]; |
| | | memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); |
| | | int b; |
| | | if (l.softmax){ |
| | | for(b = 0; b < l.batch; ++b){ |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | int offset = i*l.classes; |
| | | softmax_array(l.output + index + offset, l.classes, |
| | | l.output + index + offset); |
| | | } |
| | | int offset = locations*l.classes; |
| | | activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC); |
| | | } |
| | | } |
| | | float avg_iou = 0; |
| | | int count = 0; |
| | | if(l.does_cost && state.train){ |
| | | if(state.train){ |
| | | float avg_iou = 0; |
| | | float avg_cat = 0; |
| | | float avg_allcat = 0; |
| | | float avg_obj = 0; |
| | | float avg_anyobj = 0; |
| | | int count = 0; |
| | | *(l.cost) = 0; |
| | | int size = get_detection_layer_output_size(l) * l.batch; |
| | | int size = l.inputs * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | int classes = l.objectness+l.classes; |
| | | int offset = i*(classes+l.coords); |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(l.cost) += pow(state.truth[j] - l.output[j], 2); |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | |
| | | box truth; |
| | | truth.x = state.truth[j+0]/7; |
| | | truth.y = state.truth[j+1]/7; |
| | | truth.w = pow(state.truth[j+2], 2); |
| | | truth.h = pow(state.truth[j+3], 2); |
| | | box out; |
| | | out.x = l.output[j+0]/7; |
| | | out.y = l.output[j+1]/7; |
| | | out.w = pow(l.output[j+2], 2); |
| | | out.h = pow(l.output[j+3], 2); |
| | | |
| | | if(!(truth.w*truth.h)) continue; |
| | | float iou = box_iou(out, truth); |
| | | avg_iou += iou; |
| | | ++count; |
| | | dbox delta = diou(out, truth); |
| | | |
| | | l.delta[j+0] = 10 * delta.dx/7; |
| | | l.delta[j+1] = 10 * delta.dy/7; |
| | | l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w); |
| | | l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h); |
| | | |
| | | |
| | | *(l.cost) += pow((1-iou), 2); |
| | | l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]); |
| | | l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); |
| | | l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); |
| | | l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); |
| | | if(l.rescore){ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | if(state.truth[j]) state.truth[j] = iou; |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | for (b = 0; b < l.batch; ++b){ |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | int truth_index = (b*locations + i)*(1+l.coords+l.classes); |
| | | int is_obj = state.truth[truth_index]; |
| | | for (j = 0; j < l.n; ++j) { |
| | | int p_index = index + locations*l.classes + i*l.n + j; |
| | | l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); |
| | | *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); |
| | | avg_anyobj += l.output[p_index]; |
| | | } |
| | | |
| | | int best_index = -1; |
| | | float best_iou = 0; |
| | | float best_rmse = 20; |
| | | |
| | | if (!is_obj){ |
| | | continue; |
| | | } |
| | | |
| | | int class_index = index + i*l.classes; |
| | | for(j = 0; j < l.classes; ++j) { |
| | | l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); |
| | | *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); |
| | | if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; |
| | | avg_allcat += l.output[class_index+j]; |
| | | } |
| | | |
| | | box truth = float_to_box(state.truth + truth_index + 1 + l.classes); |
| | | truth.x /= l.side; |
| | | truth.y /= l.side; |
| | | |
| | | for(j = 0; j < l.n; ++j){ |
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; |
| | | box out = float_to_box(l.output + box_index); |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | |
| | | if (l.sqrt){ |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | |
| | | float iou = box_iou(out, truth); |
| | | //iou = 0; |
| | | float rmse = box_rmse(out, truth); |
| | | if(best_iou > 0 || iou > 0){ |
| | | if(iou > best_iou){ |
| | | best_iou = iou; |
| | | best_index = j; |
| | | } |
| | | }else{ |
| | | if(rmse < best_rmse){ |
| | | best_rmse = rmse; |
| | | best_index = j; |
| | | } |
| | | } |
| | | } |
| | | |
| | | if(l.forced){ |
| | | if(truth.w*truth.h < .1){ |
| | | best_index = 1; |
| | | }else{ |
| | | best_index = 0; |
| | | } |
| | | } |
| | | |
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; |
| | | int tbox_index = truth_index + 1 + l.classes; |
| | | |
| | | box out = float_to_box(l.output + box_index); |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | if (l.sqrt) { |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | float iou = box_iou(out, truth); |
| | | |
| | | //printf("%d,", best_index); |
| | | int p_index = index + locations*l.classes + i*l.n + best_index; |
| | | *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); |
| | | *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); |
| | | avg_obj += l.output[p_index]; |
| | | l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); |
| | | |
| | | if(l.rescore){ |
| | | l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); |
| | | } |
| | | |
| | | l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); |
| | | l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); |
| | | l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); |
| | | l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); |
| | | if(l.sqrt){ |
| | | l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); |
| | | l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); |
| | | } |
| | | |
| | | *(l.cost) += pow(1-iou, 2); |
| | | avg_iou += iou; |
| | | ++count; |
| | | } |
| | | if(l.softmax){ |
| | | gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), |
| | | LOGISTIC, l.delta + index + locations*l.classes); |
| | | } |
| | | } |
| | | printf("Avg IOU: %f\n", avg_iou/count); |
| | | printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | float scale = 1; |
| | | float latent_delta = 0; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++]; |
| | | else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | latent_delta += state.input[in_i]*l.delta[out_i]; |
| | | state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | } |
| | | |
| | | if (l.objectness) { |
| | | |
| | | }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); |
| | | for(j = 0; j < l.coords; ++j){ |
| | | state.delta[in_i++] = l.delta[out_i++]; |
| | | } |
| | | if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta; |
| | | } |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(l); |
| | | if(!state.train){ |
| | | copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); |
| | | return; |
| | | } |
| | | |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); |
| | | truth_cpu = calloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state; |
| | |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(l); |
| | | |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.input = in_cpu; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.delta = delta_cpu; |
| | | |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | backward_detection_layer(l, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); |
| | | |
| | | free(in_cpu); |
| | | free(delta_cpu); |
| | | axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); |
| | | //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |
| | | |