| | |
| | | #include <stdlib.h> |
| | | |
| | | #include "parser.h" |
| | | #include "assert.h" |
| | | #include "activations.h" |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "freeweight_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "local_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | list *options; |
| | | }section; |
| | | |
| | | int is_network(section *s); |
| | | int is_convolutional(section *s); |
| | | int is_activation(section *s); |
| | | int is_local(section *s); |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_rnn(section *s); |
| | | int is_gru(section *s); |
| | | int is_crnn(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_reorg(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_freeweight(section *s); |
| | | int is_softmax(section *s); |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_normalization(section *s); |
| | | int is_batchnorm(section *s); |
| | | int is_crop(section *s); |
| | | int is_shortcut(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_region(section *s); |
| | | int is_route(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | | void free_section(section *s) |
| | |
| | | } |
| | | } |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, network *net, int count) |
| | | typedef struct size_params{ |
| | | int batch; |
| | | int inputs; |
| | | int h; |
| | | int w; |
| | | int c; |
| | | int index; |
| | | int time_steps; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | float learning_rate, momentum, decay; |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); |
| | | |
| | | deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | local_layer parse_local(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay); |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | push_convolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before local layer must output image."); |
| | | |
| | | local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, network *net, int count) |
| | | convolutional_layer parse_convolutional(list *options, size_params params) |
| | | { |
| | | int input; |
| | | float learning_rate, momentum, decay; |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int binary = option_find_int_quiet(options, "binary", 0); |
| | | int xnor = option_find_int_quiet(options, "xnor", 0); |
| | | |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor); |
| | | layer.flipped = option_find_int_quiet(options, "flipped", 0); |
| | | layer.dot = option_find_float_quiet(options, "dot", 0); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_crnn(list *options, size_params params) |
| | | { |
| | | int output_filters = option_find_int(options, "output_filters",1); |
| | | int hidden_filters = option_find_int(options, "hidden_filters",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_rnn(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | int hidden = option_find_int(options, "hidden",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
| | | momentum = option_find_float_quiet(options, "momentum", net->momentum); |
| | | decay = option_find_float_quiet(options, "decay", net->decay); |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay); |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | #ifdef GPU |
| | | push_connected_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int logistic = option_find_int_quiet(options, "logistic", 0); |
| | | |
| | | layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_gru(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | connected_layer parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | softmax_layer *parse_softmax(list *options, network *net, int count) |
| | | softmax_layer parse_softmax(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | softmax_layer *layer = make_softmax_layer(net->batch, input); |
| | | option_unused(options); |
| | | int groups = option_find_int_quiet(options, "groups",1); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | layer.temperature = option_find_float_quiet(options, "temperature", 1); |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer *parse_cost(list *options, network *net, int count) |
| | | layer parse_region(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | cost_layer *layer = make_cost_layer(net->batch, input); |
| | | option_unused(options); |
| | | int coords = option_find_int(options, "coords", 4); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int num = option_find_int(options, "num", 1); |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); |
| | | assert(l.outputs == params.inputs); |
| | | |
| | | l.softmax = option_find_int(options, "softmax", 0); |
| | | l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.rescore = option_find_int_quiet(options, "rescore",0); |
| | | |
| | | l.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | l.object_scale = option_find_float(options, "object_scale", 1); |
| | | l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | l.class_scale = option_find_float(options, "class_scale", 1); |
| | | return l; |
| | | } |
| | | detection_layer parse_detection(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int num = option_find_int(options, "num", 1); |
| | | int side = option_find_int(options, "side", 7); |
| | | detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
| | | |
| | | layer.softmax = option_find_int(options, "softmax", 0); |
| | | layer.sqrt = option_find_int(options, "sqrt", 0); |
| | | |
| | | layer.max_boxes = option_find_int_quiet(options, "max",30); |
| | | layer.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | layer.forced = option_find_int(options, "forced", 0); |
| | | layer.object_scale = option_find_float(options, "object_scale", 1); |
| | | layer.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | layer.class_scale = option_find_float(options, "class_scale", 1); |
| | | layer.jitter = option_find_float(options, "jitter", .2); |
| | | layer.random = option_find_int_quiet(options, "random", 0); |
| | | layer.reorg = option_find_int_quiet(options, "reorg", 0); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer *parse_crop(list *options, network *net, int count) |
| | | cost_layer parse_cost(list *options, size_params params) |
| | | { |
| | | float learning_rate, momentum, decay; |
| | | int h,w,c; |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | float scale = option_find_float_quiet(options, "scale",1); |
| | | cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer parse_crop(list *options, size_params params) |
| | | { |
| | | int crop_height = option_find_int(options, "crop_height",1); |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before crop layer must output image."); |
| | | } |
| | | crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip); |
| | | option_unused(options); |
| | | float angle = option_find_float(options, "angle",0); |
| | | float saturation = option_find_float(options, "saturation",1); |
| | | float exposure = option_find_float(options, "exposure",1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | int noadjust = option_find_int_quiet(options, "noadjust",0); |
| | | |
| | | crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
| | | l.shift = option_find_float(options, "shift", 0); |
| | | l.noadjust = noadjust; |
| | | return l; |
| | | } |
| | | |
| | | layer parse_reorg(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | |
| | | layer layer = make_reorg_layer(batch,w,h,c,stride); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer *parse_maxpool(list *options, network *net, int count) |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride); |
| | | option_unused(options); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
| | | |
| | | maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | return layer; |
| | | } |
| | | |
| | | freeweight_layer *parse_freeweight(list *options, network *net, int count) |
| | | avgpool_layer parse_avgpool(list *options, size_params params) |
| | | { |
| | | int input; |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | freeweight_layer *layer = make_freeweight_layer(net->batch,input); |
| | | option_unused(options); |
| | | int batch,w,h,c; |
| | | w = params.w; |
| | | h = params.h; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before avgpool layer must output image."); |
| | | |
| | | avgpool_layer layer = make_avgpool_layer(batch,w,h,c); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer *parse_dropout(list *options, network *net, int count) |
| | | dropout_layer parse_dropout(list *options, size_params params) |
| | | { |
| | | int input; |
| | | float probability = option_find_float(options, "probability", .5); |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | dropout_layer *layer = make_dropout_layer(net->batch,input,probability); |
| | | option_unused(options); |
| | | dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | layer.out_w = params.w; |
| | | layer.out_h = params.h; |
| | | layer.out_c = params.c; |
| | | return layer; |
| | | } |
| | | |
| | | normalization_layer *parse_normalization(list *options, network *net, int count) |
| | | layer parse_normalization(list *options, size_params params) |
| | | { |
| | | int h,w,c; |
| | | int size = option_find_int(options, "size",1); |
| | | float alpha = option_find_float(options, "alpha", 0.); |
| | | float beta = option_find_float(options, "beta", 1.); |
| | | float kappa = option_find_float(options, "kappa", 1.); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | float alpha = option_find_float(options, "alpha", .0001); |
| | | float beta = option_find_float(options, "beta" , .75); |
| | | float kappa = option_find_float(options, "kappa", 1); |
| | | int size = option_find_int(options, "size", 5); |
| | | layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); |
| | | return l; |
| | | } |
| | | |
| | | layer parse_batchnorm(list *options, size_params params) |
| | | { |
| | | layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); |
| | | return l; |
| | | } |
| | | |
| | | layer parse_shortcut(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "from"); |
| | | int index = atoi(l); |
| | | if(index < 0) index = params.index + index; |
| | | |
| | | int batch = params.batch; |
| | | layer from = net.layers[index]; |
| | | |
| | | layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
| | | |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | s.activation = activation; |
| | | return s; |
| | | } |
| | | |
| | | |
| | | layer parse_activation(list *options, size_params params) |
| | | { |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | layer l = make_activation_layer(params.batch, params.inputs, activation); |
| | | |
| | | l.out_h = params.h; |
| | | l.out_w = params.w; |
| | | l.out_c = params.c; |
| | | l.h = params.h; |
| | | l.w = params.w; |
| | | l.c = params.c; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | | int len = strlen(l); |
| | | if(!l) error("Route Layer must specify input layers"); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa); |
| | | option_unused(options); |
| | | |
| | | int *layers = calloc(n, sizeof(int)); |
| | | int *sizes = calloc(n, sizeof(int)); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = atoi(l); |
| | | l = strchr(l, ',')+1; |
| | | if(index < 0) index = params.index + index; |
| | | layers[i] = index; |
| | | sizes[i] = net.layers[index].outputs; |
| | | } |
| | | int batch = params.batch; |
| | | |
| | | route_layer layer = make_route_layer(batch, n, layers, sizes); |
| | | |
| | | convolutional_layer first = net.layers[layers[0]]; |
| | | layer.out_w = first.out_w; |
| | | layer.out_h = first.out_h; |
| | | layer.out_c = first.out_c; |
| | | for(i = 1; i < n; ++i){ |
| | | int index = layers[i]; |
| | | convolutional_layer next = net.layers[index]; |
| | | if(next.out_w == first.out_w && next.out_h == first.out_h){ |
| | | layer.out_c += next.out_c; |
| | | }else{ |
| | | layer.out_h = layer.out_w = layer.out_c = 0; |
| | | } |
| | | } |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | learning_rate_policy get_policy(char *s) |
| | | { |
| | | if (strcmp(s, "random")==0) return RANDOM; |
| | | if (strcmp(s, "poly")==0) return POLY; |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | | if (strcmp(s, "exp")==0) return EXP; |
| | | if (strcmp(s, "sigmoid")==0) return SIG; |
| | | if (strcmp(s, "steps")==0) return STEPS; |
| | | fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
| | | return CONSTANT; |
| | | } |
| | | |
| | | void parse_net_options(list *options, network *net) |
| | | { |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = option_find_float(options, "learning_rate", .001); |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->time_steps = option_find_int_quiet(options, "time_steps",1); |
| | | net->batch /= subdivs; |
| | | net->batch *= net->time_steps; |
| | | net->subdivisions = subdivs; |
| | | |
| | | net->h = option_find_int_quiet(options, "height",0); |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | | char *policy_s = option_find_str(options, "policy", "constant"); |
| | | net->policy = get_policy(policy_s); |
| | | net->burn_in = option_find_int_quiet(options, "burn_in", 0); |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->scale = option_find_float(options, "scale", 1); |
| | | } else if (net->policy == STEPS){ |
| | | char *l = option_find(options, "steps"); |
| | | char *p = option_find(options, "scales"); |
| | | if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); |
| | | |
| | | int len = strlen(l); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | int *steps = calloc(n, sizeof(int)); |
| | | float *scales = calloc(n, sizeof(float)); |
| | | for(i = 0; i < n; ++i){ |
| | | int step = atoi(l); |
| | | float scale = atof(p); |
| | | l = strchr(l, ',')+1; |
| | | p = strchr(p, ',')+1; |
| | | steps[i] = step; |
| | | scales[i] = scale; |
| | | } |
| | | net->scales = scales; |
| | | net->steps = steps; |
| | | net->num_steps = n; |
| | | } else if (net->policy == EXP){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | } else if (net->policy == SIG){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY || net->policy == RANDOM){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | | } |
| | | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | network net = make_network(sections->size, 0); |
| | | |
| | | node *n = sections->front; |
| | | if(!n) error("Config file has no sections"); |
| | | network net = make_network(sections->size - 1); |
| | | size_params params; |
| | | |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | if(!is_network(s)) error("First section must be [net] or [network]"); |
| | | parse_net_options(options, &net); |
| | | |
| | | params.h = net.h; |
| | | params.w = net.w; |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | |
| | | size_t workspace_size = 0; |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | | while(n){ |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | params.index = count; |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | | if(is_convolutional(s)){ |
| | | convolutional_layer *layer = parse_convolutional(options, &net, count); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | l = parse_convolutional(options, params); |
| | | }else if(is_local(s)){ |
| | | l = parse_local(options, params); |
| | | }else if(is_activation(s)){ |
| | | l = parse_activation(options, params); |
| | | }else if(is_deconvolutional(s)){ |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_rnn(s)){ |
| | | l = parse_rnn(options, params); |
| | | }else if(is_gru(s)){ |
| | | l = parse_gru(options, params); |
| | | }else if(is_crnn(s)){ |
| | | l = parse_crnn(options, params); |
| | | }else if(is_connected(s)){ |
| | | connected_layer *layer = parse_connected(options, &net, count); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | | crop_layer *layer = parse_crop(options, &net, count); |
| | | net.types[count] = CROP; |
| | | net.layers[count] = layer; |
| | | l = parse_crop(options, params); |
| | | }else if(is_cost(s)){ |
| | | cost_layer *layer = parse_cost(options, &net, count); |
| | | net.types[count] = COST; |
| | | net.layers[count] = layer; |
| | | l = parse_cost(options, params); |
| | | }else if(is_region(s)){ |
| | | l = parse_region(options, params); |
| | | }else if(is_detection(s)){ |
| | | l = parse_detection(options, params); |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, &net, count); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | }else if(is_maxpool(s)){ |
| | | maxpool_layer *layer = parse_maxpool(options, &net, count); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | l = parse_softmax(options, params); |
| | | }else if(is_normalization(s)){ |
| | | normalization_layer *layer = parse_normalization(options, &net, count); |
| | | net.types[count] = NORMALIZATION; |
| | | net.layers[count] = layer; |
| | | l = parse_normalization(options, params); |
| | | }else if(is_batchnorm(s)){ |
| | | l = parse_batchnorm(options, params); |
| | | }else if(is_maxpool(s)){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(is_reorg(s)){ |
| | | l = parse_reorg(options, params); |
| | | }else if(is_avgpool(s)){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_shortcut(s)){ |
| | | l = parse_shortcut(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | dropout_layer *layer = parse_dropout(options, &net, count); |
| | | net.types[count] = DROPOUT; |
| | | net.layers[count] = layer; |
| | | }else if(is_freeweight(s)){ |
| | | freeweight_layer *layer = parse_freeweight(options, &net, count); |
| | | net.types[count] = FREEWEIGHT; |
| | | net.layers[count] = layer; |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | | l.delta = net.layers[count-1].delta; |
| | | #ifdef GPU |
| | | l.output_gpu = net.layers[count-1].output_gpu; |
| | | l.delta_gpu = net.layers[count-1].delta_gpu; |
| | | #endif |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | l.dontload = option_find_int_quiet(options, "dontload", 0); |
| | | l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
| | | option_unused(options); |
| | | net.layers[count] = l; |
| | | if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | free_section(s); |
| | | ++count; |
| | | n = n->next; |
| | | ++count; |
| | | if(n){ |
| | | params.h = l.out_h; |
| | | params.w = l.out_w; |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | if(workspace_size){ |
| | | //printf("%ld\n", workspace_size); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
| | | }else { |
| | | net.workspace = calloc(1, workspace_size); |
| | | } |
| | | #else |
| | | net.workspace = calloc(1, workspace_size); |
| | | #endif |
| | | } |
| | | return net; |
| | | } |
| | | |
| | | LAYER_TYPE string_to_layer_type(char * type) |
| | | { |
| | | |
| | | if (strcmp(type, "[shortcut]")==0) return SHORTCUT; |
| | | if (strcmp(type, "[crop]")==0) return CROP; |
| | | if (strcmp(type, "[cost]")==0) return COST; |
| | | if (strcmp(type, "[detection]")==0) return DETECTION; |
| | | if (strcmp(type, "[region]")==0) return REGION; |
| | | if (strcmp(type, "[local]")==0) return LOCAL; |
| | | if (strcmp(type, "[deconv]")==0 |
| | | || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; |
| | | if (strcmp(type, "[conv]")==0 |
| | | || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
| | | if (strcmp(type, "[activation]")==0) return ACTIVE; |
| | | if (strcmp(type, "[net]")==0 |
| | | || strcmp(type, "[network]")==0) return NETWORK; |
| | | if (strcmp(type, "[crnn]")==0) return CRNN; |
| | | if (strcmp(type, "[gru]")==0) return GRU; |
| | | if (strcmp(type, "[rnn]")==0) return RNN; |
| | | if (strcmp(type, "[conn]")==0 |
| | | || strcmp(type, "[connected]")==0) return CONNECTED; |
| | | if (strcmp(type, "[max]")==0 |
| | | || strcmp(type, "[maxpool]")==0) return MAXPOOL; |
| | | if (strcmp(type, "[reorg]")==0) return REORG; |
| | | if (strcmp(type, "[avg]")==0 |
| | | || strcmp(type, "[avgpool]")==0) return AVGPOOL; |
| | | if (strcmp(type, "[dropout]")==0) return DROPOUT; |
| | | if (strcmp(type, "[lrn]")==0 |
| | | || strcmp(type, "[normalization]")==0) return NORMALIZATION; |
| | | if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; |
| | | if (strcmp(type, "[soft]")==0 |
| | | || strcmp(type, "[softmax]")==0) return SOFTMAX; |
| | | if (strcmp(type, "[route]")==0) return ROUTE; |
| | | return BLANK; |
| | | } |
| | | |
| | | int is_shortcut(section *s) |
| | | { |
| | | return (strcmp(s->type, "[shortcut]")==0); |
| | | } |
| | | int is_crop(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | |
| | | { |
| | | return (strcmp(s->type, "[cost]")==0); |
| | | } |
| | | int is_region(section *s) |
| | | { |
| | | return (strcmp(s->type, "[region]")==0); |
| | | } |
| | | int is_detection(section *s) |
| | | { |
| | | return (strcmp(s->type, "[detection]")==0); |
| | | } |
| | | int is_local(section *s) |
| | | { |
| | | return (strcmp(s->type, "[local]")==0); |
| | | } |
| | | int is_deconvolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[deconv]")==0 |
| | | || strcmp(s->type, "[deconvolutional]")==0); |
| | | } |
| | | int is_convolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conv]")==0 |
| | | || strcmp(s->type, "[convolutional]")==0); |
| | | } |
| | | int is_activation(section *s) |
| | | { |
| | | return (strcmp(s->type, "[activation]")==0); |
| | | } |
| | | int is_network(section *s) |
| | | { |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_crnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crnn]")==0); |
| | | } |
| | | int is_gru(section *s) |
| | | { |
| | | return (strcmp(s->type, "[gru]")==0); |
| | | } |
| | | int is_rnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[rnn]")==0); |
| | | } |
| | | int is_connected(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conn]")==0 |
| | | || strcmp(s->type, "[connected]")==0); |
| | | } |
| | | int is_reorg(section *s) |
| | | { |
| | | return (strcmp(s->type, "[reorg]")==0); |
| | | } |
| | | int is_maxpool(section *s) |
| | | { |
| | | return (strcmp(s->type, "[max]")==0 |
| | | || strcmp(s->type, "[maxpool]")==0); |
| | | } |
| | | int is_avgpool(section *s) |
| | | { |
| | | return (strcmp(s->type, "[avg]")==0 |
| | | || strcmp(s->type, "[avgpool]")==0); |
| | | } |
| | | int is_dropout(section *s) |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | int is_freeweight(section *s) |
| | | |
| | | int is_normalization(section *s) |
| | | { |
| | | return (strcmp(s->type, "[freeweight]")==0); |
| | | return (strcmp(s->type, "[lrn]")==0 |
| | | || strcmp(s->type, "[normalization]")==0); |
| | | } |
| | | |
| | | int is_batchnorm(section *s) |
| | | { |
| | | return (strcmp(s->type, "[batchnorm]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | |
| | | return (strcmp(s->type, "[soft]")==0 |
| | | || strcmp(s->type, "[softmax]")==0); |
| | | } |
| | | int is_normalization(section *s) |
| | | int is_route(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrnorm]")==0 |
| | | || strcmp(s->type, "[localresponsenormalization]")==0); |
| | | } |
| | | |
| | | int read_option(char *s, list *options) |
| | | { |
| | | int i; |
| | | int len = strlen(s); |
| | | char *val = 0; |
| | | for(i = 0; i < len; ++i){ |
| | | if(s[i] == '='){ |
| | | s[i] = '\0'; |
| | | val = s+i+1; |
| | | break; |
| | | } |
| | | } |
| | | if(i == len-1) return 0; |
| | | char *key = s; |
| | | option_insert(options, key, val); |
| | | return 1; |
| | | return (strcmp(s->type, "[route]")==0); |
| | | } |
| | | |
| | | list *read_cfg(char *filename) |
| | |
| | | break; |
| | | default: |
| | | if(!read_option(line, current->options)){ |
| | | printf("Config file error line %d, could parse: %s\n", nu, line); |
| | | fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
| | | free(line); |
| | | } |
| | | break; |
| | |
| | | return sections; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) |
| | | void save_weights_double(network net, char *filename) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "pad=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, l->pad, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[freeweight]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs); |
| | | } |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[dropout]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | } |
| | | fprintf(fp, "probability=%g\n\n", l->probability); |
| | | } |
| | | |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n"); |
| | | if(count == 0){ |
| | | fprintf(fp, "batch=%d\n" |
| | | "input=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch, l->inputs, l->learning_rate, l->momentum, l->decay); |
| | | } else { |
| | | if(l->learning_rate != net.learning_rate) |
| | | fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
| | | if(l->momentum != net.momentum) |
| | | fprintf(fp, "momentum=%g\n", l->momentum); |
| | | if(l->decay != net.decay) |
| | | fprintf(fp, "decay=%g\n", l->decay); |
| | | } |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[crop]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); |
| | | } |
| | | |
| | | void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[localresponsenormalization]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\n" |
| | | "alpha=%g\n" |
| | | "beta=%g\n" |
| | | "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[softmax]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[cost]\n"); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | fprintf(stderr, "Saving doubled weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CROP) |
| | | print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == FREEWEIGHT) |
| | | print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DROPOUT) |
| | | print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == COST) |
| | | print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i,j,k; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | float zero = 0; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | } |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | } |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_convolutional_weights_binary(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); |
| | | int size = l.c*l.size*l.size; |
| | | int i, j, k; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | for(i = 0; i < l.n; ++i){ |
| | | float mean = l.binary_filters[i*size]; |
| | | if(mean < 0) mean = -mean; |
| | | fwrite(&mean, sizeof(float), 1, fp); |
| | | for(j = 0; j < size/8; ++j){ |
| | | int index = i*size + j*8; |
| | | unsigned char c = 0; |
| | | for(k = 0; k < 8; ++k){ |
| | | if (j*8 + k >= size) break; |
| | | if (l.binary_filters[index + k] > 0) c = (c | 1<<k); |
| | | } |
| | | fwrite(&c, sizeof(char), 1, fp); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void save_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | if(l.binary){ |
| | | //save_convolutional_weights_binary(l, fp); |
| | | //return; |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | |
| | | void save_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.scales, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.c, fp); |
| | | } |
| | | |
| | | void save_connected_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | } |
| | | } |
| | | |
| | | void save_weights_upto(network net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | int major = 0; |
| | | int minor = 1; |
| | | int revision = 0; |
| | | fwrite(&major, sizeof(int), 1, fp); |
| | | fwrite(&minor, sizeof(int), 1, fp); |
| | | fwrite(&revision, sizeof(int), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | save_convolutional_weights(l, fp); |
| | | } if(l.type == CONNECTED){ |
| | | save_connected_weights(l, fp); |
| | | } if(l.type == BATCHNORM){ |
| | | save_batchnorm_weights(l, fp); |
| | | } if(l.type == RNN){ |
| | | save_connected_weights(*(l.input_layer), fp); |
| | | save_connected_weights(*(l.self_layer), fp); |
| | | save_connected_weights(*(l.output_layer), fp); |
| | | } if(l.type == GRU){ |
| | | save_connected_weights(*(l.input_z_layer), fp); |
| | | save_connected_weights(*(l.input_r_layer), fp); |
| | | save_connected_weights(*(l.input_h_layer), fp); |
| | | save_connected_weights(*(l.state_z_layer), fp); |
| | | save_connected_weights(*(l.state_r_layer), fp); |
| | | save_connected_weights(*(l.state_h_layer), fp); |
| | | } if(l.type == CRNN){ |
| | | save_convolutional_weights(*(l.input_layer), fp); |
| | | save_convolutional_weights(*(l.self_layer), fp); |
| | | save_convolutional_weights(*(l.output_layer), fp); |
| | | } if(l.type == LOCAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_local_layer(l); |
| | | } |
| | | #endif |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.filters, sizeof(float), size, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | save_weights_upto(net, filename, net.n); |
| | | } |
| | | |
| | | void transpose_matrix(float *a, int rows, int cols) |
| | | { |
| | | float *transpose = calloc(rows*cols, sizeof(float)); |
| | | int x, y; |
| | | for(x = 0; x < rows; ++x){ |
| | | for(y = 0; y < cols; ++y){ |
| | | transpose[y*rows + x] = a[x*cols + y]; |
| | | } |
| | | } |
| | | memcpy(a, transpose, rows*cols*sizeof(float)); |
| | | free(transpose); |
| | | } |
| | | |
| | | void load_connected_weights(layer l, FILE *fp, int transpose) |
| | | { |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if(transpose){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
| | | //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); |
| | | //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); |
| | | //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | fread(l.scales, sizeof(float), l.c, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.c, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights_binary(layer l, FILE *fp) |
| | | { |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | int size = l.c*l.size*l.size; |
| | | int i, j, k; |
| | | for(i = 0; i < l.n; ++i){ |
| | | float mean = 0; |
| | | fread(&mean, sizeof(float), 1, fp); |
| | | for(j = 0; j < size/8; ++j){ |
| | | int index = i*size + j*8; |
| | | unsigned char c = 0; |
| | | fread(&c, sizeof(char), 1, fp); |
| | | for(k = 0; k < 8; ++k){ |
| | | if (j*8 + k >= size) break; |
| | | l.filters[index + k] = (c & 1<<k) ? mean : -mean; |
| | | } |
| | | } |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | if(l.binary){ |
| | | //load_convolutional_weights_binary(l, fp); |
| | | //return; |
| | | } |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | //if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | int major; |
| | | int minor; |
| | | int revision; |
| | | fread(&major, sizeof(int), 1, fp); |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | int transpose = (major > 1000) || (minor > 1000); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | load_convolutional_weights(l, fp); |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_deconvolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | load_connected_weights(l, fp, transpose); |
| | | } |
| | | if(l.type == BATCHNORM){ |
| | | load_batchnorm_weights(l, fp); |
| | | } |
| | | if(l.type == CRNN){ |
| | | load_convolutional_weights(*(l.input_layer), fp); |
| | | load_convolutional_weights(*(l.self_layer), fp); |
| | | load_convolutional_weights(*(l.output_layer), fp); |
| | | } |
| | | if(l.type == RNN){ |
| | | load_connected_weights(*(l.input_layer), fp, transpose); |
| | | load_connected_weights(*(l.self_layer), fp, transpose); |
| | | load_connected_weights(*(l.output_layer), fp, transpose); |
| | | } |
| | | if(l.type == GRU){ |
| | | load_connected_weights(*(l.input_z_layer), fp, transpose); |
| | | load_connected_weights(*(l.input_r_layer), fp, transpose); |
| | | load_connected_weights(*(l.input_h_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_z_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_r_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_h_layer), fp, transpose); |
| | | } |
| | | if(l.type == LOCAL){ |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.filters, sizeof(float), size, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_local_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fprintf(stderr, "Done!\n"); |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights(network *net, char *filename) |
| | | { |
| | | load_weights_upto(net, filename, net->n); |
| | | } |
| | | |