| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | int deconvolutional_out_height(deconvolutional_layer layer) |
| | | int deconvolutional_out_height(deconvolutional_layer l) |
| | | { |
| | | int h = layer.stride*(layer.h - 1) + layer.size; |
| | | int h = l.stride*(l.h - 1) + l.size; |
| | | return h; |
| | | } |
| | | |
| | | int deconvolutional_out_width(deconvolutional_layer layer) |
| | | int deconvolutional_out_width(deconvolutional_layer l) |
| | | { |
| | | int w = layer.stride*(layer.w - 1) + layer.size; |
| | | int w = l.stride*(l.w - 1) + l.size; |
| | | return w; |
| | | } |
| | | |
| | | int deconvolutional_out_size(deconvolutional_layer layer) |
| | | int deconvolutional_out_size(deconvolutional_layer l) |
| | | { |
| | | return deconvolutional_out_height(layer) * deconvolutional_out_width(layer); |
| | | return deconvolutional_out_height(l) * deconvolutional_out_width(l); |
| | | } |
| | | |
| | | image get_deconvolutional_image(deconvolutional_layer layer) |
| | | image get_deconvolutional_image(deconvolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = deconvolutional_out_height(layer); |
| | | w = deconvolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.output); |
| | | h = deconvolutional_out_height(l); |
| | | w = deconvolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.output); |
| | | } |
| | | |
| | | image get_deconvolutional_delta(deconvolutional_layer layer) |
| | | image get_deconvolutional_delta(deconvolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = deconvolutional_out_height(layer); |
| | | w = deconvolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.delta); |
| | | h = deconvolutional_out_height(l); |
| | | w = deconvolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.delta); |
| | | } |
| | | |
| | | deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer)); |
| | | deconvolutional_layer l = {0}; |
| | | l.type = DECONVOLUTIONAL; |
| | | |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.n = n; |
| | | l.batch = batch; |
| | | l.stride = stride; |
| | | l.size = size; |
| | | |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | l.filters = calloc(c*n*size*size, sizeof(float)); |
| | | l.filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | l.biases = calloc(n, sizeof(float)); |
| | | l.bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./sqrt(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | layer->biases[i] = scale; |
| | | l.biases[i] = scale; |
| | | } |
| | | int out_h = deconvolutional_out_height(*layer); |
| | | int out_w = deconvolutional_out_width(*layer); |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | |
| | | layer->col_image = calloc(h*w*size*size*n, sizeof(float)); |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | l.out_h = out_h; |
| | | l.out_w = out_w; |
| | | l.out_c = n; |
| | | l.outputs = l.out_w * l.out_h * l.out_c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | |
| | | l.col_image = calloc(h*w*size*size*n, sizeof(float)); |
| | | l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size); |
| | | layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size); |
| | | l.filters_gpu = cuda_make_array(l.filters, c*n*size*size); |
| | | l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size); |
| | | |
| | | layer->biases_gpu = cuda_make_array(layer->biases, n); |
| | | layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n); |
| | | l.biases_gpu = cuda_make_array(l.biases, n); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
| | | |
| | | layer->col_image_gpu = cuda_make_array(layer->col_image, h*w*size*size*n); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n); |
| | | layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n); |
| | | l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n); |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | #endif |
| | | |
| | | layer->activation = activation; |
| | | l.activation = activation; |
| | | |
| | | fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w) |
| | | void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w) |
| | | { |
| | | layer->h = h; |
| | | layer->w = w; |
| | | int out_h = deconvolutional_out_height(*layer); |
| | | int out_w = deconvolutional_out_width(*layer); |
| | | l->h = h; |
| | | l->w = w; |
| | | int out_h = deconvolutional_out_height(*l); |
| | | int out_w = deconvolutional_out_width(*l); |
| | | |
| | | layer->col_image = realloc(layer->col_image, |
| | | out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | layer->output = realloc(layer->output, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | layer->delta = realloc(layer->delta, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | l->col_image = realloc(l->col_image, |
| | | out_h*out_w*l->size*l->size*l->c*sizeof(float)); |
| | | l->output = realloc(l->output, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | l->delta = realloc(l->delta, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(layer->col_image_gpu); |
| | | cuda_free(layer->delta_gpu); |
| | | cuda_free(layer->output_gpu); |
| | | cuda_free(l->col_image_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n); |
| | | layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n); |
| | | l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); |
| | | #endif |
| | | } |
| | | |
| | | void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in) |
| | | void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int out_h = deconvolutional_out_height(layer); |
| | | int out_w = deconvolutional_out_width(layer); |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | int size = out_h*out_w; |
| | | |
| | | int m = layer.size*layer.size*layer.n; |
| | | int n = layer.h*layer.w; |
| | | int k = layer.c; |
| | | int m = l.size*l.size*l.n; |
| | | int n = l.h*l.w; |
| | | int k = l.c; |
| | | |
| | | bias_output(layer.output, layer.biases, layer.batch, layer.n, size); |
| | | bias_output(l.output, l.biases, l.batch, l.n, size); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float *a = layer.filters; |
| | | float *b = in + i*layer.c*layer.h*layer.w; |
| | | float *c = layer.col_image; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float *a = l.filters; |
| | | float *b = state.input + i*l.c*l.h*l.w; |
| | | float *c = l.col_image; |
| | | |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | |
| | | col2im_cpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output+i*layer.n*size); |
| | | col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size); |
| | | } |
| | | activate_array(layer.output, layer.batch*layer.n*size, layer.activation); |
| | | activate_array(l.output, l.batch*l.n*size, l.activation); |
| | | } |
| | | |
| | | void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta) |
| | | void backward_deconvolutional_layer(deconvolutional_layer l, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int out_h = deconvolutional_out_height(layer); |
| | | int out_w = deconvolutional_out_width(layer); |
| | | float alpha = 1./l.batch; |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | int size = out_h*out_w; |
| | | int i; |
| | | |
| | | gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta); |
| | | backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size); |
| | | gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta); |
| | | backward_bias(l.bias_updates, l.delta, l.batch, l.n, size); |
| | | |
| | | if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | int m = l.c; |
| | | int n = l.size*l.size*l.n; |
| | | int k = l.h*l.w; |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | int m = layer.c; |
| | | int n = layer.size*layer.size*layer.n; |
| | | int k = layer.h*layer.w; |
| | | float *a = state.input + i*m*n; |
| | | float *b = l.col_image; |
| | | float *c = l.filter_updates; |
| | | |
| | | float *a = in + i*m*n; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | im2col_cpu(layer.delta + i*layer.n*size, layer.n, out_h, out_w, |
| | | layer.size, layer.stride, 0, b); |
| | | im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w, |
| | | l.size, l.stride, 0, b); |
| | | gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
| | | |
| | | if(delta){ |
| | | int m = layer.c; |
| | | int n = layer.h*layer.w; |
| | | int k = layer.size*layer.size*layer.n; |
| | | if(state.delta){ |
| | | int m = l.c; |
| | | int n = l.h*l.w; |
| | | int k = l.size*l.size*l.n; |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = delta + i*n*m; |
| | | float *a = l.filters; |
| | | float *b = l.col_image; |
| | | float *c = state.delta + i*n*m; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_deconvolutional_layer(deconvolutional_layer layer) |
| | | void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); |
| | | int size = l.size*l.size*l.c*l.n; |
| | | axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.n, momentum, l.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, layer.momentum, layer.filter_updates, 1); |
| | | axpy_cpu(size, -decay, l.filters, 1, l.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate, l.filter_updates, 1, l.filters, 1); |
| | | scal_cpu(size, momentum, l.filter_updates, 1); |
| | | } |
| | | |
| | | |