| | |
| | | import os |
| | | import random |
| | | import math |
| | | import argparse |
| | | import cv2 |
| | | import numpy as np |
| | | import imutils |
| | | import pandas as pd |
| | | import fetch_data |
| | | import generate_data |
| | | from shapely import geometry |
| | | import pytesseract |
| | | import imgaug as ia |
| | | from imgaug import augmenters as iaa |
| | | from imgaug import parameters as iap |
| | | import imutils |
| | | import math |
| | | import numpy as np |
| | | import os |
| | | import pandas as pd |
| | | import random |
| | | from shapely import geometry |
| | | |
| | | card_mask = cv2.imread('data/mask.png') |
| | | data_dir = os.path.abspath('/media/win10/data') |
| | | darknet_dir = os.path.abspath('.') |
| | | import fetch_data |
| | | import generate_data |
| | | from config import Config |
| | | |
| | | |
| | | def key_pts_to_yolo(key_pts, w_img, h_img): |
| | |
| | | |
| | | class ImageGenerator: |
| | | """ |
| | | A template for generating a training image. |
| | | A template for generating a training image |
| | | An ImageGenerator contains a background image, list of cards, and other environmental parameters to |
| | | set up a training image for YOLO network |
| | | """ |
| | | def __init__(self, img_bg, class_ids, width, height, skew=None, cards=None): |
| | | """ |
| | |
| | | else: |
| | | self.cards = cards |
| | | |
| | | # Compute transform matrix for perspective transform |
| | | # Compute transform matrix for perspective transform (used for skewing the final result) |
| | | if skew is not None: |
| | | orig_corner = np.array([[0, 0], [0, height], [width, height], [width, 0]], dtype=np.float32) |
| | | new_corner = np.array([[width * s[0], height * s[1]] for s in skew], dtype=np.float32) |
| | |
| | | :param scale: new scale for the card |
| | | :return: none |
| | | """ |
| | | # If the position isn't given, push it out of the image so that it won't be visible during rendering |
| | | if x is None: |
| | | x = -len(card.img[0]) / 2 |
| | | if y is None: |
| | |
| | | card.scale = scale |
| | | pass |
| | | |
| | | def render(self, visibility=0.5, display=False, debug=False, aug=None): |
| | | def render(self, visibility=0.5, aug=None, display=False, debug=False): |
| | | """ |
| | | Display the current state of the generator |
| | | Display the current state of the generator. |
| | | :param visibility: portion of the card's image that must not be overlapped by other cards for the card to be |
| | | considered as visible |
| | | :param aug: image augmentator to apply during rendering |
| | | :param display: flag for displaying the rendering result |
| | | :param debug: flag for debug |
| | | :return: none |
| | | """ |
| | | self.check_visibility(visibility=visibility) |
| | | #img_result = cv2.resize(self.img_bg, (self.width, self.height)) |
| | | img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8) |
| | | card_mask = cv2.imread(Config.card_mask_path) |
| | | |
| | | for card in self.cards: |
| | | if card.x == 0.0 and card.y == 0.0 and card.theta == 0.0 and card.scale == 1.0: |
| | | continue |
| | | card_x = int(card.x + 0.5) |
| | | card_y = int(card.y + 0.5) |
| | | #print(card_x, card_y, card.theta, card.scale) |
| | | |
| | | # Scale & rotate card image |
| | | img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale))) |
| | | # Add a random glaring on individual card - it happens frequently in real life as MTG cards can reflect |
| | | # the lights very well. |
| | | if aug is not None: |
| | | seq = iaa.Sequential([ |
| | | iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(128)), size_px_max=[1, 3], |
| | |
| | | bounding_box = card.bb_in_generator(ext_obj.key_pts) |
| | | cv2.rectangle(img_result, bounding_box[0], bounding_box[2], (1, 255, 1), 5) |
| | | |
| | | ''' |
| | | try: |
| | | text = pytesseract.image_to_string(img_result, output_type=pytesseract.Output.DICT) |
| | | print(text) |
| | | except pytesseract.pytesseract.TesseractError: |
| | | pass |
| | | ''' |
| | | img_result = cv2.GaussianBlur(img_result, (5, 5), 0) |
| | | |
| | | # Skew the cards if it's provided |
| | | if self.M is not None: |
| | | img_result = cv2.warpPerspective(img_result, self.M, (self.width, self.height)) |
| | | if debug: |
| | |
| | | img_bg = cv2.resize(self.img_bg, (self.width, self.height)) |
| | | img_result = np.where(img_result, img_result, img_bg) |
| | | |
| | | # Apply image augmentation |
| | | if aug is not None: |
| | | img_result = aug.augment_image(img_result) |
| | | |
| | | if display: |
| | | if display or debug: |
| | | cv2.imshow('Result', img_result) |
| | | cv2.waitKey(0) |
| | | |
| | |
| | | def generate_horizontal_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None): |
| | | """ |
| | | Generating the first scenario where the cards are laid out in a straight horizontal line |
| | | :param gap: horizontal offset between each adjacent cards |
| | | :param scale: scale of each cards in the generator |
| | | :param theta: rotation of the entire span in radian |
| | | :param shift: range of arbitrary offset for each card |
| | | :param jitter: range of in-place rotation for each card in radian |
| | | :return: True if successfully generated, otherwise False |
| | | """ |
| | | # Set scale of the cards, variance of shift & jitter to be applied if they're not given |
| | |
| | | shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05] |
| | | pass |
| | | if jitter is None: |
| | | jitter = [-math.pi / 18, math.pi / 18] # Plus minus 10 degrees |
| | | # Plus minus 10 degrees |
| | | jitter = [-math.pi / 18, math.pi / 18] |
| | | if gap is None: |
| | | # 25% of the card's width - set symbol and 1-2 mana symbols will be visible on each card |
| | | gap = card_size[0] * scale * 0.4 |
| | |
| | | def generate_vertical_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None): |
| | | """ |
| | | Generating the second scenario where the cards are laid out in a straight vertical line |
| | | :param gap: horizontal offset between each adjacent cards |
| | | :param scale: scale of each cards in the generator |
| | | :param theta: rotation of the entire span in radian |
| | | :param shift: range of arbitrary offset for each card |
| | | :param jitter: range of in-place rotation for each card in radian |
| | | :return: True if successfully generated, otherwise False |
| | | :return: True if successfully generated, otherwise False |
| | | """ |
| | | # Set scale of the cards, variance of shift & jitter to be applied if they're not given |
| | |
| | | Generating the third scenario where the cards are laid out in a fan shape |
| | | :return: True if successfully generated, otherwise False |
| | | """ |
| | | # TODO |
| | | return False |
| | | |
| | | def generate_non_obstructive(self, tolerance=0.90, scale=None): |
| | | """ |
| | | Generating the fourth scenario where the cards are laid in arbitrary position that doesn't obstruct other cards |
| | | :param tolerance: minimum level of visibility for each cards |
| | | :param scale: scale of each cards in generator |
| | | :return: True if successfully generated, otherwise False |
| | | """ |
| | | card_size = (len(self.cards[0].img[0]), len(self.cards[0].img)) |
| | |
| | | # Position each card at random location that doesn't obstruct other cards |
| | | i = 0 |
| | | while i < len(self.cards): |
| | | #for i in range(len(self.cards)): |
| | | card = self.cards[i] |
| | | card.scale = scale |
| | | rep = 0 |
| | |
| | | |
| | | def check_visibility(self, cards=None, i_check=None, visibility=0.5): |
| | | """ |
| | | Check whether if extracted objects in each card are visible in the current scenario, and update their status |
| | | :param cards: list of cards (in a correct order) |
| | | Check whether if extracted objects in a card is visible in the current scenario, and update their status |
| | | :param cards: list of cards (in a correct Z-order). All cards in this Generator are checked by default. |
| | | :param i_check: indices of cards that needs to be checked. Cards that aren't in this list will only be used |
| | | to check visibility of other cards. All cards are checked by default. |
| | | :param visibility: minimum ratio of the object's area that aren't covered by another card to be visible |
| | |
| | | cards = self.cards |
| | | if i_check is None: |
| | | i_check = range(len(cards)) |
| | | |
| | | # Create a polygon of each card |
| | | card_poly_list = [geometry.Polygon([card.coordinate_in_generator(0, 0), |
| | | card.coordinate_in_generator(0, len(card.img)), |
| | | card.coordinate_in_generator(len(card.img[0]), len(card.img)), |
| | |
| | | obj_poly = geometry.Polygon([card.coordinate_in_generator(pt[0], pt[1]) for pt in ext_obj.key_pts]) |
| | | obj_area = obj_poly.area |
| | | # Check if the other cards are blocking this object or if it's out of the template |
| | | # If there are other polygons with higher indices in the list, that card is overlapping this object |
| | | # We assume that no objects from the same card is on top of each other |
| | | for card_poly in card_poly_list[i + 1:]: |
| | | obj_poly = obj_poly.difference(card_poly) |
| | | obj_poly = obj_poly.intersection(template_poly) |
| | | visible_area = obj_poly.area |
| | | #print(visible_area, obj_area, len(card.img[0]) * len(card.img) * card.scale * card.scale) |
| | | #print("%s: %.1f visible" % (ext_obj.label, visible_area / obj_area * 100)) |
| | | ext_obj.visible = obj_area * visibility <= visible_area |
| | | |
| | | def export_training_data(self, out_name, visibility=0.5, aug=None): |
| | | """ |
| | | Export the generated training image along with the txt file for all bounding boxes |
| | | :param out_name: path of the output file (without extension) |
| | | :param visibility: portion of the card's image that must not be overlapped by other cards for the card to be |
| | | considered as visible |
| | | :param aug: image augmentator to be applied |
| | | :return: none |
| | | """ |
| | | self.render(visibility, aug=aug) |
| | | cv2.imwrite(out_name + '.jpg', self.img_result) |
| | | out_txt = open(out_name+ '.txt', 'w') |
| | | out_txt = open(out_name + '.txt', 'w') |
| | | for card in self.cards: |
| | | for ext_obj in card.objects: |
| | | if not ext_obj.visible: |
| | |
| | | obj_yolo_info = key_pts_to_yolo(coords_in_gen, self.width, self.height) |
| | | if ext_obj.label == 'card': |
| | | #class_id = self.class_ids[card.info['name']] |
| | | class_id = 0 |
| | | class_id = 0 # since only the entire card is used |
| | | out_txt.write(str(class_id) + ' %.6f %.6f %.6f %.6f\n' % obj_yolo_info) |
| | | pass |
| | | elif ext_obj.label[:ext_obj.label.find[':']] == 'mana_symbol': |
| | | # TODO |
| | | pass |
| | | elif ext_obj.label[:ext_obj.label.find[':']] == 'set_symbol': |
| | | # TODO |
| | | pass |
| | | out_txt.close() |
| | | pass |
| | | |
| | | |
| | | class Card: |
| | |
| | | :param img: image of the card |
| | | :param card_info: details like name, mana cost, type, set, etc |
| | | :param objects: list of ExtractedObjects like mana & set symbol, etc |
| | | :param generator: ImageGenerator object that the card is bound to |
| | | :param x: X-coordinate of the card's centre in relation to the generator |
| | | :param y: Y-coordinate of the card's centre in relation to the generator |
| | | :param theta: angle of rotation of the card in relation to the generator |
| | |
| | | """ |
| | | Apply a X/Y translation on this image |
| | | :param x: amount of X-translation. If range is given, translate by a random amount within that range |
| | | :param y: amount of Y-translation. Refer to x when a range is given. |
| | | :param y: amount of Y-translation. If range is given, translate by a random amount within that range |
| | | :return: none |
| | | """ |
| | | if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2): |
| | |
| | | """ |
| | | Apply a rotation on this image with a centre |
| | | :param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within |
| | | that range |
| | | :param centre: coordinate of the centre of the rotation in relation to the centre of this card |
| | | that range |
| | | :return: none |
| | | """ |
| | | if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2): |
| | |
| | | x2 = max([pt[0] for pt in coords_in_gen]) |
| | | y1 = min([pt[1] for pt in coords_in_gen]) |
| | | y2 = max([pt[1] for pt in coords_in_gen]) |
| | | ''' |
| | | x1 = -math.inf |
| | | x2 = math.inf |
| | | y1 = -math.inf |
| | | y2 = math.inf |
| | | for key_pt in key_pts: |
| | | coord_in_gen = self.coordinate_in_generator(key_pt[0], key_pt[1]) |
| | | x1 = max(x1, coord_in_gen[0]) |
| | | x2 = min(x2, coord_in_gen[0]) |
| | | y1 = max(y1, coord_in_gen[1]) |
| | | y2 = min(y2, coord_in_gen[1]) |
| | | ''' |
| | | return [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] |
| | | |
| | | |
| | |
| | | self.visible = False |
| | | |
| | | |
| | | def main(): |
| | | def main(args): |
| | | random.seed() |
| | | ia.seed(random.randrange(10000)) |
| | | |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False) |
| | | #bg_images = [cv2.imread('data/frilly_0007.jpg')] |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % Config.data_dir, dump_it=False) |
| | | background = generate_data.Backgrounds(images=bg_images) |
| | | |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name)) |
| | | for set_name in Config.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name)) |
| | | card_pool = card_pool.append(df) |
| | | class_ids = {} |
| | | with open('%s/obj.names' % data_dir) as names_file: |
| | | with open('%s/obj.names' % Config.data_dir) as names_file: |
| | | class_name_list = names_file.read().splitlines() |
| | | for i in range(len(class_name_list)): |
| | | class_ids[class_name_list[i]] = i |
| | | |
| | | num_gen = 60000 |
| | | num_iter = 1 |
| | | |
| | | for i in range(num_gen): |
| | | for i in range(args.num_gen): |
| | | # Arbitrarily select top left and right corners for perspective transformation |
| | | # Since the training image are generated with random rotation, don't need to skew all four sides |
| | | skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1], |
| | | [random.uniform(0.75, 1), 0]] |
| | | generator = ImageGenerator(background.get_random(), class_ids, 1440, 960, skew=skew) |
| | | generator = ImageGenerator(background.get_random(), class_ids, args.width, args.height, skew=skew) |
| | | out_name = '' |
| | | |
| | | # Use 2 to 5 cards per generator |
| | | for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows(): |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'], |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | out_name += '%s%s_' % (card_info['set'], card_info['collector_number']) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set'])) |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (Config.data_dir, |
| | | card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | | detected_object_list = generate_data.apply_bounding_box(card_img, card_info) |
| | | card = Card(card_img, card_info, detected_object_list) |
| | | generator.add_card(card) |
| | | for j in range(num_iter): |
| | | |
| | | for j in range(args.num_iter): |
| | | seq = iaa.Sequential([ |
| | | iaa.Multiply((0.8, 1.2)), # darken / brighten the whole image |
| | | iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6], |
| | | upscale_method="cubic"), # Lighting |
| | | iaa.AdditiveGaussianNoise(scale=random.uniform(0, 0.05) * 255, per_channel=0.1), # Noises |
| | | iaa.Dropout(p=[0, 0.05], per_channel=0.1) |
| | | iaa.Dropout(p=[0, 0.05], per_channel=0.1) # Dropout |
| | | ]) |
| | | |
| | | if i % 3 == 0: |
| | | generator.generate_non_obstructive() |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | elif i % 3 == 1: |
| | | generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | else: |
| | | generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | |
| | | #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | #generator.render(display=True, aug=seq, debug=True) |
| | |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | parser = argparse.ArgumentParser() |
| | | parser.add_argument('-n', '--num_gen', dest='num_gen', help='Number of training images to generate', |
| | | type=int, required=True) |
| | | parser.add_argument('-ni', '--num_iter', dest='num_iter', help='Number of iterations to generate each config', |
| | | type=int, default=1) |
| | | parser.add_argument('-w', '--width', dest='width', help='Width of the training image', type=int, default=1440) |
| | | parser.add_argument('-ht', '--height', dest='height', help='Height of the training image', type=int, default=960) |
| | | args = parser.parse_args() |
| | | main(args) |