| | |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | //layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = scale*2*(rand_uniform()-.5); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | //layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_cl = cl_make_array(layer->biases, outputs); |
| | | |
| | |
| | | |
| | | layer->output_cl = cl_make_array(layer->output, outputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); |
| | | } |
| | |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |
| | | #endif |