| | |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | scale = .01; |
| | | float scale = 1./sqrt(size*size*c); |
| | | //scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = .01; |
| | | layer->biases[i] = scale; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | |
| | | { |
| | | int size = convolutional_out_height(layer) * convolutional_out_width(layer); |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_learn_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | |
| | | int out_w = convolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |