Joseph Redmon
2014-12-16 884045091b3a22d4dda3a9d743d076367c840ef7
src/network.c
@@ -1,4 +1,5 @@
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
@@ -8,7 +9,9 @@
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@@ -22,54 +25,14 @@
    net.outputs = 0;
    net.output = 0;
    #ifdef GPU
    net.input_cl = 0;
    net.input_cl = calloc(1, sizeof(cl_mem));
    net.truth_cl = calloc(1, sizeof(cl_mem));
    #endif
    return net;
}
#ifdef GPU
void forward_network_gpu(network net, cl_mem input_cl, int train)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer_gpu(layer, input_cl);
            input_cl = layer.output_cl;
        }
        /*
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer(layer, input, train);
            input = layer.output;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == CROP){
            crop_layer layer = *(crop_layer *)net.layers[i];
            forward_crop_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            forward_normalization_layer(layer, input);
            input = layer.output;
        }
        */
    }
}
#endif
void forward_network(network net, float *input, int train)
void forward_network(network net, float *input, float *truth, int train)
{
    int i;
    for(i = 0; i < net.n; ++i){
@@ -88,6 +51,10 @@
            forward_crop_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            forward_cost_layer(layer, input, truth);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
@@ -108,6 +75,11 @@
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            forward_dropout_layer(layer, input);
        }
        else if(net.types[i] == FREEWEIGHT){
            if(!train) continue;
            freeweight_layer layer = *(freeweight_layer *)net.layers[i];
            forward_freeweight_layer(layer, input);
        }
    }
}
@@ -148,9 +120,14 @@
        return layer.output;
    } else if(net.types[i] == DROPOUT){
        return get_network_output_layer(net, i-1);
    } else if(net.types[i] == FREEWEIGHT){
        return get_network_output_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return layer.output;
@@ -159,7 +136,9 @@
}
float *get_network_output(network net)
{
    return get_network_output_layer(net, net.n-1);
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    return get_network_output_layer(net, i);
}
float *get_network_delta_layer(network net, int i)
@@ -175,6 +154,8 @@
        return layer.delta;
    } else if(net.types[i] == DROPOUT){
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == FREEWEIGHT){
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
@@ -182,6 +163,14 @@
    return 0;
}
float get_network_cost(network net)
{
    if(net.types[net.n-1] == COST){
        return ((cost_layer *)net.layers[net.n-1])->output[0];
    }
    return 0;
}
float *get_network_delta(network net)
{
    return get_network_delta_layer(net, net.n-1);
@@ -212,9 +201,8 @@
    return max_index(out, k);
}
float backward_network(network net, float *input, float *truth)
void backward_network(network net, float *input)
{
    float error = calculate_error_network(net, truth);
    int i;
    float *prev_input;
    float *prev_delta;
@@ -228,11 +216,15 @@
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            backward_convolutional_layer(layer, prev_delta);
            backward_convolutional_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
            if(i != 0) backward_maxpool_layer(layer, prev_delta);
        }
        else if(net.types[i] == DROPOUT){
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            backward_dropout_layer(layer, prev_delta);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -240,23 +232,28 @@
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
            if(i != 0) backward_softmax_layer(layer, prev_delta);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            backward_connected_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            backward_cost_layer(layer, prev_input, prev_delta);
        }
    }
    return error;
}
float train_network_datum(network net, float *x, float *y)
{
    forward_network(net, x, 1);
    //int class = get_predicted_class_network(net);
    float error = backward_network(net, x, y);
    #ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
    #endif
    forward_network(net, x, y, 1);
    backward_network(net, x);
    float error = get_network_cost(net);
    update_network(net);
    //return (y[class]?1:0);
    return error;
}
@@ -269,7 +266,7 @@
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_batch(d, batch, X, y);
        get_random_batch(d, batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
@@ -277,6 +274,26 @@
    free(y);
    return (float)sum/(n*batch);
}
float train_network(network net, data d)
{
    int batch = net.batch;
    int n = d.X.rows / batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_next_batch(d, batch, i*batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n)
{
    int i,j;
@@ -287,31 +304,74 @@
            int index = rand()%d.X.rows;
            float *x = d.X.vals[index];
            float *y = d.y.vals[index];
            forward_network(net, x, 1);
            sum += backward_network(net, x, y);
            forward_network(net, x, y, 1);
            backward_network(net, x);
            sum += get_network_cost(net);
        }
        update_network(net);
    }
    return (float)sum/(n*batch);
}
void train_network(network net, data d)
void set_learning_network(network *net, float rate, float momentum, float decay)
{
    int i;
    int correct = 0;
    for(i = 0; i < d.X.rows; ++i){
        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
        if(i%100 == 0){
            visualize_network(net);
            cvWaitKey(10);
    net->learning_rate=rate;
    net->momentum = momentum;
    net->decay = decay;
    for(i = 0; i < net->n; ++i){
        if(net->types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
            layer->learning_rate=rate;
            layer->momentum = momentum;
            layer->decay = decay;
        }
        else if(net->types[i] == CONNECTED){
            connected_layer *layer = (connected_layer *)net->layers[i];
            layer->learning_rate=rate;
            layer->momentum = momentum;
            layer->decay = decay;
        }
    }
    visualize_network(net);
    cvWaitKey(100);
    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
}
void set_batch_network(network *net, int b)
{
    net->batch = b;
    int i;
    for(i = 0; i < net->n; ++i){
        if(net->types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == MAXPOOL){
            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == CONNECTED){
            connected_layer *layer = (connected_layer *)net->layers[i];
            layer->batch = b;
        } else if(net->types[i] == DROPOUT){
            dropout_layer *layer = (dropout_layer *) net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == FREEWEIGHT){
            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == SOFTMAX){
            softmax_layer *layer = (softmax_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == COST){
            cost_layer *layer = (cost_layer *)net->layers[i];
            layer->batch = b;
        }
    }
}
int get_network_input_size_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
@@ -328,11 +388,19 @@
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    } else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *) net.layers[i];
        return layer.c*layer.h*layer.w;
    }
    else if(net.types[i] == FREEWEIGHT){
        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    printf("Can't find input size\n");
    return 0;
}
@@ -348,17 +416,27 @@
        image output = get_maxpool_image(layer);
        return output.h*output.w*output.c;
    }
     else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *) net.layers[i];
        return layer.c*layer.crop_height*layer.crop_width;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    } else if(net.types[i] == DROPOUT){
    }
    else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == FREEWEIGHT){
        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    printf("Can't find output size\n");
    return 0;
}
@@ -396,7 +474,8 @@
int get_network_output_size(network net)
{
    int i = net.n-1;
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    return get_network_output_size_layer(net, i);
}
@@ -441,7 +520,7 @@
    image *prev = 0;
    int i;
    char buff[256];
    show_image(get_network_image_layer(net, 0), "Crop");
    //show_image(get_network_image_layer(net, 0), "Crop");
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        if(net.types[i] == CONVOLUTIONAL){
@@ -455,9 +534,21 @@
    } 
}
void top_predictions(network net, int k, int *index)
{
    int size = get_network_output_size(net);
    float *out = get_network_output(net);
    top_k(out, size, k, index);
}
float *network_predict(network net, float *input)
{
    forward_network(net, input, 0);
    #ifdef GPU
        if(gpu_index >= 0) return network_predict_gpu(net, input);
    #endif
    forward_network(net, input, 0, 0);
    float *out = get_network_output(net);
    return out;
}
@@ -492,7 +583,7 @@
    int i,j,b;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.rows, sizeof(float));
    float *X = calloc(net.batch*test.X.cols, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
@@ -557,15 +648,26 @@
float network_accuracy(network net, data d)
{
    matrix guess = network_predict_data(net, d);
    float acc = matrix_accuracy(d.y, guess);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}
float *network_accuracies(network net, data d)
{
    static float acc[2];
    matrix guess = network_predict_data(net, d);
    acc[0] = matrix_topk_accuracy(d.y, guess,1);
    acc[1] = matrix_topk_accuracy(d.y, guess,5);
    free_matrix(guess);
    return acc;
}
float network_accuracy_multi(network net, data d, int n)
{
    matrix guess = network_predict_data_multi(net, d, n);
    float acc = matrix_accuracy(d.y, guess);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}