| | |
| | | return net; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
| | | { |
| | | //printf("start\n"); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | //clock_t time = clock(); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | forward_cost_layer_gpu(layer, input, truth); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | //printf("%d %f\n", i, sec(clock()-time)); |
| | | /* |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | |
| | | void backward_network_gpu(network net, cl_mem input) |
| | | { |
| | | int i; |
| | | cl_mem prev_input; |
| | | cl_mem prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_cl_layer(net, i-1); |
| | | prev_delta = get_network_delta_cl_layer(net, i-1); |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | backward_maxpool_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | backward_softmax_layer_gpu(layer, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_network_gpu(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer_gpu(layer); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer_gpu(layer); |
| | | } |
| | | } |
| | | } |
| | | |
| | | cl_mem get_network_output_cl_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | cl_mem get_network_delta_cl_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | void forward_network(network net, float *input, float *truth, int train) |
| | | { |
| | |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer(layer, prev_delta); |
| | | backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | #ifdef GPU |
| | | float train_network_datum_gpu(network net, float *x, float *y) |
| | | { |
| | | int x_size = get_network_input_size(net)*net.batch; |
| | | int y_size = get_network_output_size(net)*net.batch; |
| | | clock_t time = clock(); |
| | | if(!*net.input_cl){ |
| | | *net.input_cl = cl_make_array(x, x_size); |
| | | *net.truth_cl = cl_make_array(y, y_size); |
| | | }else{ |
| | | cl_write_array(*net.input_cl, x, x_size); |
| | | cl_write_array(*net.truth_cl, y, y_size); |
| | | } |
| | | //printf("trans %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
| | | //printf("forw %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | backward_network_gpu(net, *net.input_cl); |
| | | //printf("back %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | float error = get_network_cost(net); |
| | | update_network_gpu(net); |
| | | //printf("updt %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_sgd_gpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum_gpu(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network_data_gpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum_gpu(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | #endif |
| | | |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | forward_network(net, x, y, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | backward_network(net, x); |
| | | float error = get_network_cost(net); |
| | | update_network(net); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network(network net, data d) |
| | | { |
| | | int batch = net.batch; |
| | | int n = d.X.rows / batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d) |
| | | void set_learning_network(network *net, float rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | | net->learning_rate=rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == FREEWEIGHT){ |
| | | freeweight_layer *layer = (freeweight_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == SOFTMAX){ |
| | | softmax_layer *layer = (softmax_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == COST){ |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void top_predictions(network net, int n, int *index) |
| | | void top_predictions(network net, int k, int *index) |
| | | { |
| | | int i,j; |
| | | int k = get_network_output_size(net); |
| | | int size = get_network_output_size(net); |
| | | float *out = get_network_output(net); |
| | | float thresh = FLT_MAX; |
| | | for(i = 0; i < n; ++i){ |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for(j = 0; j < k; ++j){ |
| | | float val = out[j]; |
| | | if(val > max && val < thresh){ |
| | | max = val; |
| | | max_i = j; |
| | | } |
| | | } |
| | | index[i] = max_i; |
| | | thresh = max; |
| | | } |
| | | top_k(out, size, k, index); |
| | | } |
| | | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | forward_network(net, input, 0, 0); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess,1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess,5); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |