| | |
| | | |
| | | route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes) |
| | | { |
| | | fprintf(stderr,"Route Layer:"); |
| | | fprintf(stderr,"route "); |
| | | route_layer l = {0}; |
| | | l.type = ROUTE; |
| | | l.batch = batch; |
| | |
| | | fprintf(stderr, "\n"); |
| | | l.outputs = outputs; |
| | | l.inputs = outputs; |
| | | l.delta = calloc(outputs*batch, sizeof(float)); |
| | | l.delta = calloc(outputs*batch, sizeof(float)); |
| | | l.output = calloc(outputs*batch, sizeof(float));; |
| | | |
| | | l.forward = forward_route_layer; |
| | | l.backward = backward_route_layer; |
| | | #ifdef GPU |
| | | l.delta_gpu = cuda_make_array(0, outputs*batch); |
| | | l.output_gpu = cuda_make_array(0, outputs*batch); |
| | | l.forward_gpu = forward_route_layer_gpu; |
| | | l.backward_gpu = backward_route_layer_gpu; |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, outputs*batch); |
| | | l.output_gpu = cuda_make_array(l.output, outputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void forward_route_layer(const route_layer l, network net) |
| | | void resize_route_layer(route_layer *l, network *net) |
| | | { |
| | | int i; |
| | | layer first = net->layers[l->input_layers[0]]; |
| | | l->out_w = first.out_w; |
| | | l->out_h = first.out_h; |
| | | l->out_c = first.out_c; |
| | | l->outputs = first.outputs; |
| | | l->input_sizes[0] = first.outputs; |
| | | for(i = 1; i < l->n; ++i){ |
| | | int index = l->input_layers[i]; |
| | | layer next = net->layers[index]; |
| | | l->outputs += next.outputs; |
| | | l->input_sizes[i] = next.outputs; |
| | | if(next.out_w == first.out_w && next.out_h == first.out_h){ |
| | | l->out_c += next.out_c; |
| | | }else{ |
| | | printf("%d %d, %d %d\n", next.out_w, next.out_h, first.out_w, first.out_h); |
| | | l->out_h = l->out_w = l->out_c = 0; |
| | | } |
| | | } |
| | | l->inputs = l->outputs; |
| | | l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float)); |
| | | l->output = realloc(l->output, l->outputs*l->batch*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->output_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
| | | #endif |
| | | |
| | | } |
| | | |
| | | void forward_route_layer(const route_layer l, network_state state) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *input = net.layers[index].output; |
| | | float *input = state.net.layers[index].output; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_route_layer(const route_layer l, network net) |
| | | void backward_route_layer(const route_layer l, network_state state) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *delta = net.layers[index].delta; |
| | | float *delta = state.net.layers[index].delta; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_cpu(input_size, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | } |
| | | offset += input_size; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_route_layer_gpu(const route_layer l, network net) |
| | | void forward_route_layer_gpu(const route_layer l, network_state state) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *input = net.layers[index].output_gpu; |
| | | float *input = state.net.layers[index].output_gpu; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_route_layer_gpu(const route_layer l, network net) |
| | | void backward_route_layer_gpu(const route_layer l, network_state state) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *delta = net.layers[index].delta_gpu; |
| | | float *delta = state.net.layers[index].delta_gpu; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_ongpu(input_size, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | } |
| | | offset += input_size; |
| | | } |