| | |
| | | l.bias_updates = calloc(n*2, sizeof(float)); |
| | | l.outputs = h*w*n*(classes + 4 + 1); |
| | | l.inputs = l.outputs; |
| | | l.max_boxes = max_boxes; |
| | | l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1); |
| | | l.max_boxes = max_boxes; |
| | | l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1); |
| | | l.delta = calloc(batch*l.outputs, sizeof(float)); |
| | | l.output = calloc(batch*l.outputs, sizeof(float)); |
| | | for(i = 0; i < total*2; ++i){ |
| | |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "detection\n"); |
| | | fprintf(stderr, "yolo\n"); |
| | | srand(0); |
| | | |
| | | return l; |
| | |
| | | } |
| | | |
| | | |
| | | void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat) |
| | | void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss) |
| | | { |
| | | int n; |
| | | if (delta[index]){ |
| | | delta[index + stride*class] = 1 - output[index + stride*class]; |
| | | if(avg_cat) *avg_cat += output[index + stride*class]; |
| | | if (delta[index + stride*class_id]){ |
| | | delta[index + stride*class_id] = 1 - output[index + stride*class_id]; |
| | | if(avg_cat) *avg_cat += output[index + stride*class_id]; |
| | | return; |
| | | } |
| | | for(n = 0; n < classes; ++n){ |
| | | delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n]; |
| | | if(n == class && avg_cat) *avg_cat += output[index + stride*n]; |
| | | // Focal loss |
| | | if (focal_loss) { |
| | | // Focal Loss |
| | | float alpha = 0.5; // 0.25 or 0.5 |
| | | //float gamma = 2; // hardcoded in many places of the grad-formula |
| | | |
| | | int ti = index + stride*class_id; |
| | | float pt = output[ti] + 0.000000000000001F; |
| | | // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d |
| | | float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 |
| | | //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss |
| | | |
| | | for (n = 0; n < classes; ++n) { |
| | | delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); |
| | | |
| | | delta[index + stride*n] *= alpha*grad; |
| | | |
| | | if (n == class_id) *avg_cat += output[index + stride*n]; |
| | | } |
| | | } |
| | | else { |
| | | // default |
| | | for (n = 0; n < classes; ++n) { |
| | | delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n]; |
| | | if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | |
| | | static box float_to_box_stride(float *f, int stride) |
| | | { |
| | | box b = { 0 }; |
| | | b.x = f[0]; |
| | | b.y = f[1 * stride]; |
| | | b.w = f[2 * stride]; |
| | | b.h = f[3 * stride]; |
| | | return b; |
| | | box b = { 0 }; |
| | | b.x = f[0]; |
| | | b.y = f[1 * stride]; |
| | | b.w = f[2 * stride]; |
| | | b.h = f[3 * stride]; |
| | | return b; |
| | | } |
| | | |
| | | void forward_yolo_layer(const layer l, network_state state) |
| | |
| | | int best_t = 0; |
| | | for(t = 0; t < l.max_boxes; ++t){ |
| | | box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); |
| | | if(!truth.x) break; |
| | | int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
| | | if (class_id >= l.classes) { |
| | | printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1); |
| | | getchar(); |
| | | continue; // if label contains class_id more than number of classes in the cfg-file |
| | | } |
| | | if(!truth.x) break; // continue; |
| | | float iou = box_iou(pred, truth); |
| | | if (iou > best_iou) { |
| | | best_iou = iou; |
| | |
| | | if (best_iou > l.truth_thresh) { |
| | | l.delta[obj_index] = 1 - l.output[obj_index]; |
| | | |
| | | int class = state.truth[best_t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class = l.map[class]; |
| | | int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class_id = l.map[class_id]; |
| | | int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0); |
| | | delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss); |
| | | box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); |
| | | delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); |
| | | } |
| | |
| | | } |
| | | for(t = 0; t < l.max_boxes; ++t){ |
| | | box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); |
| | | int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
| | | if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file |
| | | |
| | | if(!truth.x) break; |
| | | if(!truth.x) break; // continue; |
| | | float best_iou = 0; |
| | | int best_n = 0; |
| | | i = (truth.x * l.w); |
| | |
| | | avg_obj += l.output[obj_index]; |
| | | l.delta[obj_index] = 1 - l.output[obj_index]; |
| | | |
| | | int class = state.truth[t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class = l.map[class]; |
| | | int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class_id = l.map[class_id]; |
| | | int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); |
| | | delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss); |
| | | |
| | | ++count; |
| | | ++class_count; |
| | |
| | | int i; |
| | | int new_w=0; |
| | | int new_h=0; |
| | | if (letter) { |
| | | if (((float)netw / w) < ((float)neth / h)) { |
| | | new_w = netw; |
| | | new_h = (h * netw) / w; |
| | | } |
| | | else { |
| | | new_h = neth; |
| | | new_w = (w * neth) / h; |
| | | } |
| | | } |
| | | else { |
| | | new_w = netw; |
| | | new_h = neth; |
| | | } |
| | | if (letter) { |
| | | if (((float)netw / w) < ((float)neth / h)) { |
| | | new_w = netw; |
| | | new_h = (h * netw) / w; |
| | | } |
| | | else { |
| | | new_h = neth; |
| | | new_w = (w * neth) / h; |
| | | } |
| | | } |
| | | else { |
| | | new_w = netw; |
| | | new_h = neth; |
| | | } |
| | | for (i = 0; i < n; ++i){ |
| | | box b = dets[i].bbox; |
| | | b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); |
| | | b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); |
| | | b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); |
| | | b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); |
| | | b.w *= (float)netw/new_w; |
| | | b.h *= (float)neth/new_h; |
| | | if(!relative){ |
| | |
| | | } |
| | | |
| | | //cuda_pull_array(l.output_gpu, state.input, l.batch*l.inputs); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs); |
| | | float *truth_cpu = 0; |
| | | if (state.truth) { |
| | | int num_truth = l.batch*l.truths; |
| | | truth_cpu = calloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | network_state cpu_state = state; |
| | | cpu_state.net = state.net; |
| | | cpu_state.index = state.index; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_yolo_layer(l, cpu_state); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs); |
| | | float *truth_cpu = 0; |
| | | if (state.truth) { |
| | | int num_truth = l.batch*l.truths; |
| | | truth_cpu = calloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | network_state cpu_state = state; |
| | | cpu_state.net = state.net; |
| | | cpu_state.index = state.index; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_yolo_layer(l, cpu_state); |
| | | //forward_yolo_layer(l, state); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); |
| | | free(in_cpu); |
| | | if (cpu_state.truth) free(cpu_state.truth); |
| | | free(in_cpu); |
| | | if (cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_yolo_layer_gpu(const layer l, network_state state) |