| | |
| | | |
| | | #define FRAMES 3 |
| | | |
| | | int max_objects() { return C_SHARP_MAX_OBJECTS; } |
| | | |
| | | //static Detector* detector = NULL; |
| | | static std::unique_ptr<Detector> detector; |
| | | |
| | | int init(const char *configurationFilename, const char *weightsFilename, int gpu) |
| | | int init(const char *configurationFilename, const char *weightsFilename, int gpu) |
| | | { |
| | | detector.reset(new Detector(configurationFilename, weightsFilename, gpu)); |
| | | return 1; |
| | | } |
| | | |
| | | int detect_image(const char *filename, bbox_t_container &container) |
| | | int detect_image(const char *filename, bbox_t_container &container) |
| | | { |
| | | std::vector<bbox_t> detection = detector->detect(filename); |
| | | for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i) |
| | |
| | | return detection.size(); |
| | | #else |
| | | return -1; |
| | | #endif // OPENCV |
| | | #endif // OPENCV |
| | | } |
| | | |
| | | int dispose() { |
| | |
| | | return 1; |
| | | } |
| | | |
| | | int get_device_count() { |
| | | #ifdef GPU |
| | | int count = 0; |
| | | cudaGetDeviceCount(&count); |
| | | return count; |
| | | #else |
| | | return -1; |
| | | #endif // GPU |
| | | } |
| | | |
| | | int get_device_name(int gpu, char* deviceName) { |
| | | #ifdef GPU |
| | | cudaDeviceProp prop; |
| | | cudaGetDeviceProperties(&prop, gpu); |
| | | std::string result = prop.name; |
| | | std::copy(result.begin(), result.end(), deviceName); |
| | | return 1; |
| | | #else |
| | | return -1; |
| | | #endif // GPU |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void check_cuda(cudaError_t status) { |
| | | if (status != cudaSuccess) { |
| | |
| | | wait_stream = 0; |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | check_cuda(cudaGetDevice(&old_gpu_index)); |
| | | check_cuda( cudaGetDevice(&old_gpu_index) ); |
| | | #endif |
| | | |
| | | detector_gpu_ptr = std::make_shared<detector_gpu_t>(); |
| | |
| | | network &net = detector_gpu.net; |
| | | net.gpu_index = cur_gpu_id; |
| | | //gpu_index = i; |
| | | |
| | | |
| | | char *cfgfile = const_cast<char *>(cfg_filename.data()); |
| | | char *weightfile = const_cast<char *>(weight_filename.data()); |
| | | |
| | |
| | | for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1; |
| | | |
| | | #ifdef GPU |
| | | check_cuda(cudaSetDevice(old_gpu_index)); |
| | | check_cuda( cudaSetDevice(old_gpu_index) ); |
| | | #endif |
| | | } |
| | | |
| | | |
| | | YOLODLL_API Detector::~Detector() |
| | | YOLODLL_API Detector::~Detector() |
| | | { |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | layer l = detector_gpu.net.layers[detector_gpu.net.n - 1]; |
| | |
| | | |
| | | free(detector_gpu.avg); |
| | | for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]); |
| | | for (int j = 0; j < FRAMES; ++j) if (detector_gpu.images[j].data) free(detector_gpu.images[j].data); |
| | | for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data); |
| | | |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | |
| | | { |
| | | int w, h, c; |
| | | unsigned char *data = stbi_load(filename, &w, &h, &c, channels); |
| | | if (!data) |
| | | if (!data) |
| | | throw std::runtime_error("file not found"); |
| | | if (channels) c = channels; |
| | | int i, j, k; |
| | |
| | | for (k = 0; k < c; ++k) { |
| | | for (j = 0; j < h; ++j) { |
| | | for (i = 0; i < w; ++i) { |
| | | int dst_index = i + w * j + w * h*k; |
| | | int src_index = k + c * i + c * w*j; |
| | | int dst_index = i + w*j + w*h*k; |
| | | int src_index = k + c*i + c*w*j; |
| | | im.data[dst_index] = (float)data[src_index] / 255.; |
| | | } |
| | | } |
| | |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | if (cur_gpu_id != old_gpu_index) |
| | | if(cur_gpu_id != old_gpu_index) |
| | | cudaSetDevice(net.gpu_index); |
| | | |
| | | net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait |
| | | net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait |
| | | #endif |
| | | //std::cout << "net.gpu_index = " << net.gpu_index << std::endl; |
| | | //std::cout << "net.gpu_index = " << net.gpu_index << std::endl; |
| | | |
| | | //float nms = .4; |
| | | //float nms = .4; |
| | | |
| | | image im; |
| | | im.c = img.c; |
| | |
| | | im.w = img.w; |
| | | |
| | | image sized; |
| | | |
| | | |
| | | if (net.w == im.w && net.h == im.h) { |
| | | sized = make_image(im.w, im.h, im.c); |
| | | memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float)); |
| | |
| | | box b = dets[i].bbox; |
| | | int const obj_id = max_index(dets[i].prob, l.classes); |
| | | float const prob = dets[i].prob[obj_id]; |
| | | |
| | | if (prob > thresh) |
| | | |
| | | if (prob > thresh) |
| | | { |
| | | bbox_t bbox; |
| | | bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w); |
| | |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | if (sized.data) |
| | | if(sized.data) |
| | | free(sized.data); |
| | | |
| | | #ifdef GPU |
| | |
| | | return bbox_vec; |
| | | } |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, |
| | | YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, |
| | | int const frames_story, int const max_dist) |
| | | { |
| | | detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | |
| | | for (size_t m = 0; m < cur_bbox_vec.size(); ++m) { |
| | | bbox_t const& k = cur_bbox_vec[m]; |
| | | if (i.obj_id == k.obj_id) { |
| | | float center_x_diff = (float)(i.x + i.w / 2) - (float)(k.x + k.w / 2); |
| | | float center_y_diff = (float)(i.y + i.h / 2) - (float)(k.y + k.h / 2); |
| | | unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff * center_y_diff); |
| | | float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2); |
| | | float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2); |
| | | unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff); |
| | | if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) { |
| | | dist_vec[m] = cur_dist; |
| | | cur_index = m; |
| | |
| | | } |
| | | } |
| | | |
| | | bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), |
| | | bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), |
| | | [&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; }); |
| | | |
| | | if (cur_index >= 0 && track_id_absent) { |
| | | if (cur_index >= 0 && track_id_absent){ |
| | | cur_bbox_vec[cur_index].track_id = i.track_id; |
| | | cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2; |
| | | cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2; |