| | |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "parser.h" |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | #include "matrix.h" |
| | | #include "server.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | #define _GNU_SOURCE |
| | | #include <fenv.h> |
| | | #include "parser.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "connected_layer.h" |
| | | |
| | | void test_load() |
| | | { |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | show_image(dog, "Test Load"); |
| | | show_image_layers(dog, "Test Load"); |
| | | } |
| | | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("cfg/trained_imagenet.cfg"); |
| | | save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
| | | } |
| | | |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | float amount[AMNT] = {0}; |
| | | for(r = 0; r < side*side; ++r){ |
| | | float val = box[r*5]; |
| | | for(j = 0; j < AMNT; ++j){ |
| | | if(val > amount[j]) { |
| | | float swap = val; |
| | | val = amount[j]; |
| | | amount[j] = swap; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[AMNT-1]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | //printf("%d %d %d %d\n", x, y, w, h); |
| | | //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | |
| | | void train_detection_net(char *cfgfile) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); |
| | | //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256); |
| | | |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[923]); |
| | | draw_detection(im, train.y.vals[923], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | | void validate_detection_net(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 50; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer); |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | normalize_data_rows(val); |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer); |
| | | |
| | | fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += 5){ |
| | | if (pred.vals[j][k] > .005){ |
| | | int index = k/5; |
| | | int r = index/7; |
| | | int c = index%7; |
| | | float y = (32.*(r + pred.vals[j][k+1]))/224.; |
| | | float x = (32.*(c + pred.vals[j][k+2]))/224.; |
| | | float h = (256.*(pred.vals[j][k+3]))/224.; |
| | | float w = (256.*(pred.vals[j][k+4]))/224.; |
| | | printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w); |
| | | } |
| | | } |
| | | } |
| | | |
| | | time=clock(); |
| | | free_data(val); |
| | | } |
| | | } |
| | | /* |
| | | |
| | | void train_imagenet_distributed(char *address) |
| | | { |
| | | float avg_loss = 1; |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_learning_network(&net, 0, 1, 0); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | |
| | | time=clock(); |
| | | client_update(net, address); |
| | | printf("Updated: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | float loss = train_network(net, train); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | free_data(train); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | char *basename(char *cfgfile) |
| | | { |
| | | char *c = cfgfile; |
| | | char *next; |
| | | while((next = strchr(c, '/'))) |
| | | { |
| | | c = next+1; |
| | | } |
| | | c = copy_string(c); |
| | | next = strchr(c, '_'); |
| | | if (next) *next = 0; |
| | | next = strchr(c, '.'); |
| | | if (next) *next = 0; |
| | | return c; |
| | | } |
| | | |
| | | void train_imagenet(char *cfgfile, char *weightfile) |
| | | { |
| | | float avg_loss = -1; |
| | | // TODO |
| | | srand(0); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | //test_learn_bias(*(convolutional_layer *)net.layers[1]); |
| | | //set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | while(1){ |
| | | ++i; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_imagenet(char *filename, char *weightfile) |
| | | { |
| | | int i = 0; |
| | | network net = parse_network_cfg(filename); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | int splits = 50; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float *acc = network_accuracies(net, val); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | | void test_detection(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char filename[256]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_init(char *cfgfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *filename = "data/test.jpg"; |
| | | |
| | | image im = load_image_color(filename, 256, 256); |
| | | //z_normalize_image(im); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | float *X = im.data; |
| | | forward_network(net, X, 0, 1); |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | int size = output.h*output.w*output.c; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | int size = layer.outputs; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Connected, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | } |
| | | free_image(im); |
| | | } |
| | | void test_dog(char *cfgfile) |
| | | { |
| | | image im = load_image_color("data/dog.jpg", 256, 256); |
| | | translate_image(im, -128); |
| | | print_image(im); |
| | | float *X = im.data; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | network_predict(net, X); |
| | | image crop = get_network_image_layer(net, 0); |
| | | show_image(crop, "cropped"); |
| | | print_image(crop); |
| | | show_image(im, "orig"); |
| | | float * inter = get_network_output(net); |
| | | pm(1000, 1, inter); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_imagenet(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = get_labels("cfg/shortnames.txt"); |
| | | clock_t time; |
| | | char filename[256]; |
| | | int indexes[10]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | for(i = 0; i < 10; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_visualize(char *filename) |
| | | { |
| | | network net = parse_network_cfg(filename); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_cifar10(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy_multi(net, test, 10); |
| | | end = clock(); |
| | | printf("%f in %f Sec\n", test_acc, sec(end-start)); |
| | | //visualize_network(net); |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void train_cifar10(char *cfgfile) |
| | | { |
| | | srand(555555); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | data train = load_all_cifar10(); |
| | | while(++count <= 10000){ |
| | | clock_t time = clock(); |
| | | float loss = train_network_sgd(net, train, iters); |
| | | |
| | | if(count%10 == 0){ |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count); |
| | | save_network(net, buff); |
| | | }else{ |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); |
| | | } |
| | | |
| | | } |
| | | free_data(train); |
| | | } |
| | | |
| | | void compare_nist(char *p1,char *p2) |
| | | { |
| | | srand(222222); |
| | | network n1 = parse_network_cfg(p1); |
| | | network n2 = parse_network_cfg(p2); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(test); |
| | | compare_networks(n1, n2, test); |
| | | } |
| | | |
| | | void test_nist(char *path) |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg(path); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(test); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy(net, test); |
| | | end = clock(); |
| | | printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void train_nist(char *cfgfile) |
| | | { |
| | | srand(222222); |
| | | // srand(time(0)); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | network net = parse_network_cfg(cfgfile); |
| | | int count = 0; |
| | | int iters = 6000/net.batch + 1; |
| | | while(++count <= 100){ |
| | | clock_t start = clock(), end; |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float test_acc = 0; |
| | | if(count%1 == 0) test_acc = network_accuracy(net, test); |
| | | end = clock(); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | free_data(train); |
| | | free_data(test); |
| | | char buff[256]; |
| | | sprintf(buff, "%s.trained", cfgfile); |
| | | save_network(net, buff); |
| | | } |
| | | |
| | | /* |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | | srand(888888); |
| | | data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | normalize_data_rows(d); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
| | | normalize_data_rows(test); |
| | | data train = d; |
| | | // data *split = split_data(d, 1, 10); |
| | | // data train = split[0]; |
| | | // data test = split[1]; |
| | | matrix prediction = make_matrix(test.y.rows, test.y.cols); |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | float acc = train_network_sgd(net, train, train.X.rows); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_topk_accuracy(test.y, partial,1); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image_color("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0, 0); |
| | | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void test_convolutional_layer() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | int size = get_network_input_size(net); |
| | | float *in = calloc(size, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < size; ++i) in[i] = rand_normal(); |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[0]; |
| | | int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch; |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "nothing"); |
| | | cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases"); |
| | | cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters"); |
| | | bias_output(layer); |
| | | bias_output_gpu(layer); |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); |
| | | } |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void test_correct_nist() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 1000/net.batch; |
| | | extern void run_voxel(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_detector(int argc, char **argv); |
| | | extern void run_coco(int argc, char **argv); |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | | extern void run_nightmare(int argc, char **argv); |
| | | extern void run_dice(int argc, char **argv); |
| | | extern void run_compare(int argc, char **argv); |
| | | extern void run_classifier(int argc, char **argv); |
| | | extern void run_char_rnn(int argc, char **argv); |
| | | extern void run_vid_rnn(int argc, char **argv); |
| | | extern void run_tag(int argc, char **argv); |
| | | extern void run_cifar(int argc, char **argv); |
| | | extern void run_go(int argc, char **argv); |
| | | extern void run_art(int argc, char **argv); |
| | | extern void run_super(int argc, char **argv); |
| | | |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | save_network(net, "cfg/nist_gpu.cfg"); |
| | | |
| | | gpu_index = -1; |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | save_network(net, "cfg/nist_cpu.cfg"); |
| | | } |
| | | |
| | | void test_correct_alexnet() |
| | | { |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | int count = 0; |
| | | network net; |
| | | |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | int imgs = net.batch; |
| | | |
| | | count = 0; |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | |
| | | gpu_index = -1; |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | | /* |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | */ |
| | | |
| | | void del_arg(int argc, char **argv, int index) |
| | | { |
| | | int i; |
| | | for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; |
| | | argv[i] = 0; |
| | | } |
| | | |
| | | int find_arg(int argc, char* argv[], char *arg) |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc; ++i) { |
| | | if(!argv[i]) continue; |
| | | if(0==strcmp(argv[i], arg)) { |
| | | del_arg(argc, argv, i); |
| | | return 1; |
| | | } |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int find_int_arg(int argc, char **argv, char *arg, int def) |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc-1; ++i){ |
| | | if(!argv[i]) continue; |
| | | if(0==strcmp(argv[i], arg)){ |
| | | def = atoi(argv[i+1]); |
| | | del_arg(argc, argv, i); |
| | | del_arg(argc, argv, i); |
| | | break; |
| | | } |
| | | } |
| | | return def; |
| | | } |
| | | |
| | | void scale_rate(char *filename, float scale) |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | | // Ready for some weird shit?? |
| | | FILE *fp = fopen(filename, "r+b"); |
| | | if(!fp) file_error(filename); |
| | | float rate = 0; |
| | | fread(&rate, sizeof(float), 1, fp); |
| | | printf("Scaling learning rate from %f to %f\n", rate, rate*scale); |
| | | rate = rate*scale; |
| | | printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add); |
| | | rate = rate*scale + add; |
| | | fseek(fp, 0, SEEK_SET); |
| | | fwrite(&rate, sizeof(float), 1, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | void average(int argc, char *argv[]) |
| | | { |
| | | char *cfgfile = argv[2]; |
| | | char *outfile = argv[3]; |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | network sum = parse_network_cfg(cfgfile); |
| | | |
| | | char *weightfile = argv[4]; |
| | | load_weights(&sum, weightfile); |
| | | |
| | | int i, j; |
| | | int n = argc - 5; |
| | | for(i = 0; i < n; ++i){ |
| | | weightfile = argv[i+5]; |
| | | load_weights(&net, weightfile); |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = net.layers[j]; |
| | | layer out = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(num, 1, l.filters, 1, out.filters, 1); |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); |
| | | } |
| | | } |
| | | } |
| | | n = n+1; |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | scal_cpu(l.n, 1./n, l.biases, 1); |
| | | scal_cpu(num, 1./n, l.filters, 1); |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | scal_cpu(l.outputs, 1./n, l.biases, 1); |
| | | scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); |
| | | } |
| | | } |
| | | save_weights(sum, outfile); |
| | | } |
| | | |
| | | void speed(char *cfgfile, int tics) |
| | | { |
| | | if (tics == 0) tics = 1000; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | int i; |
| | | time_t start = time(0); |
| | | image im = make_image(net.w, net.h, net.c); |
| | | for(i = 0; i < tics; ++i){ |
| | | network_predict(net, im.data); |
| | | } |
| | | double t = difftime(time(0), start); |
| | | printf("\n%d evals, %f Seconds\n", tics, t); |
| | | printf("Speed: %f sec/eval\n", t/tics); |
| | | printf("Speed: %f Hz\n", tics/t); |
| | | } |
| | | |
| | | void operations(char *cfgfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | int i; |
| | | long ops = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w; |
| | | } else if(l.type == CONNECTED){ |
| | | ops += 2l * l.inputs * l.outputs; |
| | | } |
| | | } |
| | | printf("Floating Point Operations: %ld\n", ops); |
| | | printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); |
| | | } |
| | | |
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights_upto(&net, weightfile, max); |
| | | } |
| | | *net.seen = 0; |
| | | save_weights_upto(net, outfile, max); |
| | | } |
| | | |
| | | void stacked(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.seen = 0; |
| | | save_weights_double(net, outfile); |
| | | } |
| | | |
| | | #include "convolutional_layer.h" |
| | | void rescale_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rescale_filters(l, 2, -.5); |
| | | break; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rgbgr_filters(l); |
| | | break; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
| | | denormalize_convolutional_layer(l); |
| | | } |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | denormalize_connected_layer(l); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.input_z_layer); |
| | | denormalize_connected_layer(*l.input_r_layer); |
| | | denormalize_connected_layer(*l.input_h_layer); |
| | | denormalize_connected_layer(*l.state_z_layer); |
| | | denormalize_connected_layer(*l.state_r_layer); |
| | | denormalize_connected_layer(*l.state_h_layer); |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | layer normalize_layer(layer l, int n) |
| | | { |
| | | int j; |
| | | l.batch_normalize=1; |
| | | l.scales = calloc(n, sizeof(float)); |
| | | for(j = 0; j < n; ++j){ |
| | | l.scales[j] = 1; |
| | | } |
| | | l.rolling_mean = calloc(n, sizeof(float)); |
| | | l.rolling_variance = calloc(n, sizeof(float)); |
| | | return l; |
| | | } |
| | | |
| | | void normalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL && !l.batch_normalize){ |
| | | net.layers[i] = normalize_layer(l, l.n); |
| | | } |
| | | if (l.type == CONNECTED && !l.batch_normalize) { |
| | | net.layers[i] = normalize_layer(l, l.outputs); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); |
| | | *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); |
| | | *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); |
| | | *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); |
| | | *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); |
| | | *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); |
| | | net.layers[i].batch_normalize=1; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void denormalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
| | | denormalize_convolutional_layer(l); |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | denormalize_connected_layer(l); |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.input_z_layer); |
| | | denormalize_connected_layer(*l.input_r_layer); |
| | | denormalize_connected_layer(*l.input_h_layer); |
| | | denormalize_connected_layer(*l.state_z_layer); |
| | | denormalize_connected_layer(*l.state_r_layer); |
| | | denormalize_connected_layer(*l.state_h_layer); |
| | | l.input_z_layer->batch_normalize = 0; |
| | | l.input_r_layer->batch_normalize = 0; |
| | | l.input_h_layer->batch_normalize = 0; |
| | | l.state_z_layer->batch_normalize = 0; |
| | | l.state_r_layer->batch_normalize = 0; |
| | | l.state_h_layer->batch_normalize = 0; |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void visualize(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | visualize_network(net); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | #endif |
| | | } |
| | | |
| | | int main(int argc, char **argv) |
| | | { |
| | | //test_resize("data/bad.jpg"); |
| | | //test_box(); |
| | | //test_convolutional_layer(); |
| | | if(argc < 2){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | gpu_index = find_int_arg(argc, argv, "-i", 0); |
| | | if(find_arg(argc, argv, "-nogpu")) gpu_index = -1; |
| | | if(find_arg(argc, argv, "-nogpu")) { |
| | | gpu_index = -1; |
| | | } |
| | | |
| | | #ifndef GPU |
| | | gpu_index = -1; |
| | | #else |
| | | if(gpu_index >= 0){ |
| | | cudaSetDevice(gpu_index); |
| | | cudaError_t status = cudaSetDevice(gpu_index); |
| | | check_error(status); |
| | | } |
| | | #endif |
| | | |
| | | if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); |
| | | //else if(0==strcmp(argv[1], "server")) run_server(); |
| | | |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | |
| | | else if(argc < 3){ |
| | | fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]); |
| | | return 0; |
| | | if (0 == strcmp(argv[1], "average")){ |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yolo")){ |
| | | run_yolo(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "voxel")){ |
| | | run_voxel(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "super")){ |
| | | run_super(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "detector")){ |
| | | run_detector(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "cifar")){ |
| | | run_cifar(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "go")){ |
| | | run_go(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "rnn")){ |
| | | run_char_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "vid")){ |
| | | run_vid_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "classifier")){ |
| | | run_classifier(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "art")){ |
| | | run_art(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "tag")){ |
| | | run_tag(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | | run_compare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "dice")){ |
| | | run_dice(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "writing")){ |
| | | run_writing(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "3d")){ |
| | | composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); |
| | | } else if (0 == strcmp(argv[1], "test")){ |
| | | test_resize(argv[2]); |
| | | } else if (0 == strcmp(argv[1], "captcha")){ |
| | | run_captcha(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "nightmare")){ |
| | | run_nightmare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "change")){ |
| | | change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0); |
| | | } else if (0 == strcmp(argv[1], "rgbgr")){ |
| | | rgbgr_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "reset")){ |
| | | reset_normalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "denormalize")){ |
| | | denormalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "normalize")){ |
| | | normalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "rescale")){ |
| | | rescale_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "ops")){ |
| | | operations(argv[2]); |
| | | } else if (0 == strcmp(argv[1], "speed")){ |
| | | speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0); |
| | | } else if (0 == strcmp(argv[1], "partial")){ |
| | | partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
| | | } else if (0 == strcmp(argv[1], "average")){ |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "stacked")){ |
| | | stacked(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "visualize")){ |
| | | visualize(argv[2], (argc > 3) ? argv[3] : 0); |
| | | } else if (0 == strcmp(argv[1], "imtest")){ |
| | | test_resize(argv[2]); |
| | | } else { |
| | | fprintf(stderr, "Not an option: %s\n", argv[1]); |
| | | } |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
| | | //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]); |
| | | else if(argc < 4){ |
| | | fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]); |
| | | else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3])); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | | |