| | |
| | | #include "utils.h" |
| | | } |
| | | |
| | | __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial) |
| | | { |
| | | int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (index >= N) return; |
| | | int f = (index/spatial)%filters; |
| | | |
| | | x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f); |
| | | } |
| | | |
| | | __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) |
| | | { |
| | | int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (index >= N) return; |
| | | int f = (index/spatial)%filters; |
| | | |
| | | delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); |
| | | } |
| | | |
| | | extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) |
| | | { |
| | | size_t N = batch*filters*spatial; |
| | | normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= filters) return; |
| | | int j,k; |
| | | variance_delta[i] = 0; |
| | | for(j = 0; j < batch; ++j){ |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | variance_delta[i] += delta[index]*(x[index] - mean[i]); |
| | | } |
| | | } |
| | | variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.)); |
| | | } |
| | | |
| | | __global__ void spatial_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= batch*filters) return; |
| | | int f = i%filters; |
| | | int b = i/filters; |
| | | |
| | | int k; |
| | | spatial_variance_delta[i] = 0; |
| | | for (k = 0; k < spatial; ++k) { |
| | | int index = b*filters*spatial + f*spatial + k; |
| | | spatial_variance_delta[i] += delta[index]*(x[index] - mean[f]); |
| | | } |
| | | spatial_variance_delta[i] *= -.5 * pow(variance[f] + .00001f, (float)(-3./2.)); |
| | | } |
| | | |
| | | extern "C" void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) |
| | | { |
| | | variance_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void accumulate_kernel(float *x, int n, int groups, float *sum) |
| | | { |
| | | int k; |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= groups) return; |
| | | sum[i] = 0; |
| | | for(k = 0; k < n; ++k){ |
| | | sum[i] += x[k*groups + i]; |
| | | } |
| | | } |
| | | |
| | | extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta) |
| | | { |
| | | spatial_variance_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, spatial_variance_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance_delta, batch, filters, variance_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void spatial_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= batch*filters) return; |
| | | int f = i%filters; |
| | | int b = i/filters; |
| | | |
| | | int k; |
| | | spatial_mean_delta[i] = 0; |
| | | for (k = 0; k < spatial; ++k) { |
| | | int index = b*filters*spatial + f*spatial + k; |
| | | spatial_mean_delta[i] += delta[index]; |
| | | } |
| | | spatial_mean_delta[i] *= (-1./sqrt(variance[f] + .00001f)); |
| | | } |
| | | |
| | | extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta) |
| | | { |
| | | spatial_mean_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(delta, variance, batch, filters, spatial, spatial_mean_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean_delta, batch, filters, mean_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= filters) return; |
| | | int j,k; |
| | | mean_delta[i] = 0; |
| | | for (j = 0; j < batch; ++j) { |
| | | for (k = 0; k < spatial; ++k) { |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | mean_delta[i] += delta[index]; |
| | | } |
| | | } |
| | | mean_delta[i] *= (-1./sqrt(variance[i] + .00001f)); |
| | | } |
| | | |
| | | extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) |
| | | { |
| | | mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean) |
| | | { |
| | | float scale = 1./(batch * spatial); |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= filters) return; |
| | | int j,k; |
| | | mean[i] = 0; |
| | | for(j = 0; j < batch; ++j){ |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | mean[i] += x[index]; |
| | | } |
| | | } |
| | | mean[i] *= scale; |
| | | } |
| | | |
| | | __global__ void spatial_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| | | { |
| | | float scale = 1./(spatial*batch-1); |
| | | int k; |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= batch*filters) return; |
| | | int f = i%filters; |
| | | int b = i/filters; |
| | | |
| | | variance[i] = 0; |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = b*filters*spatial + f*spatial + k; |
| | | variance[i] += pow((x[index] - mean[f]), 2); |
| | | } |
| | | variance[i] *= scale; |
| | | } |
| | | |
| | | __global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| | | { |
| | | float scale = 1./(batch * spatial); |
| | | int j,k; |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= filters) return; |
| | | variance[i] = 0; |
| | | for(j = 0; j < batch; ++j){ |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | variance[i] += pow((x[index] - mean[i]), 2); |
| | | } |
| | | } |
| | | variance[i] *= scale; |
| | | } |
| | | |
| | | __global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | |
| | | if(i < N) X[i*INCX] *= ALPHA; |
| | | } |
| | | |
| | | __global__ void fill_kernel(int N, float ALPHA, float *X, int INCX) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(i < N) X[i*INCX] = ALPHA; |
| | | } |
| | | |
| | | __global__ void mask_kernel(int n, float *x, float mask_num, float *mask) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | |
| | | if(i < N) Y[i*INCY] *= X[i*INCX]; |
| | | } |
| | | |
| | | extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) |
| | | { |
| | | size_t N = batch*filters*spatial; |
| | | normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean) |
| | | { |
| | | mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean) |
| | | { |
| | | mean_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, 1, filters*batch, spatial, spatial_mean); |
| | | check_error(cudaPeekAtLastError()); |
| | | mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean, batch, filters, 1, mean); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance) |
| | | { |
| | | spatial_variance_kernel<<<cuda_gridsize(batch*filters), BLOCK>>>(x, mean, batch, filters, spatial, spatial_variance); |
| | | check_error(cudaPeekAtLastError()); |
| | | accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance, batch, filters, variance); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| | | { |
| | | variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) |
| | | { |
| | | axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY); |
| | |
| | | scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX) |
| | | { |
| | | fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |