Joseph Redmon
2016-01-28 913d355ec1cf34aad71fdd75202fc3b0309e63a0
src/network_kernels.cu
@@ -11,13 +11,14 @@
#include "image.h"
#include "data.h"
#include "utils.h"
#include "params.h"
#include "parser.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "rnn_layer.h"
#include "detection_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
@@ -27,6 +28,7 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
#include "blas.h"
}
@@ -38,6 +40,7 @@
{
    int i;
    for(i = 0; i < net.n; ++i){
        state.index = i;
        layer l = net.layers[i];
        if(l.delta_gpu){
            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
@@ -46,12 +49,16 @@
            forward_convolutional_layer_gpu(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer_gpu(l, state);
        } else if(l.type == ACTIVE){
            forward_activation_layer_gpu(l, state);
        } else if(l.type == LOCAL){
            forward_local_layer_gpu(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer_gpu(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer_gpu(l, state);
        } else if(l.type == RNN){
            forward_rnn_layer_gpu(l, state);
        } else if(l.type == CROP){
            forward_crop_layer_gpu(l, state);
        } else if(l.type == COST){
@@ -68,6 +75,8 @@
            forward_dropout_layer_gpu(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer_gpu(l, net);
        } else if(l.type == SHORTCUT){
            forward_shortcut_layer_gpu(l, state);
        }
        state.input = l.output_gpu;
    }
@@ -79,6 +88,7 @@
    float * original_input = state.input;
    float * original_delta = state.delta;
    for(i = net.n-1; i >= 0; --i){
        state.index = i;
        layer l = net.layers[i];
        if(i == 0){
            state.input = original_input;
@@ -92,6 +102,8 @@
            backward_convolutional_layer_gpu(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            backward_deconvolutional_layer_gpu(l, state);
        } else if(l.type == ACTIVE){
            backward_activation_layer_gpu(l, state);
        } else if(l.type == LOCAL){
            backward_local_layer_gpu(l, state);
        } else if(l.type == MAXPOOL){
@@ -108,10 +120,14 @@
            if(i != 0) backward_softmax_layer_gpu(l, state);
        } else if(l.type == CONNECTED){
            backward_connected_layer_gpu(l, state);
        } else if(l.type == RNN){
            backward_rnn_layer_gpu(l, state);
        } else if(l.type == COST){
            backward_cost_layer_gpu(l, state);
        } else if(l.type == ROUTE){
            backward_route_layer_gpu(l, net);
        } else if(l.type == SHORTCUT){
            backward_shortcut_layer_gpu(l, state);
        }
    }
}
@@ -129,6 +145,8 @@
            update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
        } else if(l.type == RNN){
            update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
        } else if(l.type == LOCAL){
            update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
        }
@@ -138,6 +156,8 @@
float train_network_datum_gpu(network net, float *x, float *y)
{
    network_state state;
    state.index = 0;
    state.net = net;
    int x_size = get_network_input_size(net)*net.batch;
    int y_size = get_network_output_size(net)*net.batch;
    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
@@ -178,6 +198,8 @@
{
    int size = get_network_input_size(net) * net.batch;
    network_state state;
    state.index = 0;
    state.net = net;
    state.input = cuda_make_array(input, size);
    state.truth = 0;
    state.train = 0;