Joseph Redmon
2016-10-24 91f95c715bff84094fc18bad6a8f938291b9b0f5
src/blas_kernels.cu
@@ -312,6 +312,38 @@
    variance[i] *= scale;
}
__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i >= N) return;
    int in_index = i;
    int in_w = i%w;
    i = i/w;
    int in_h = i%h;
    i = i/h;
    int in_c = i%c;
    i = i/c;
    int b = i%batch;
    int out_c = c/(stride*stride);
    int c2 = in_c % out_c;
    int offset = in_c / out_c;
    int w2 = in_w*stride + offset % stride;
    int h2 = in_h*stride + offset / stride;
    //printf("%d\n", offset);
    int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
   // printf("%d %d %d\n", w2, h2, c2);
    //printf("%d %d\n", in_index, out_index);
    //if(out_index >= N || out_index < 0) printf("bad bad bad \n");
    if(forward) out[out_index] = x[in_index];
    else out[in_index] = x[out_index];
    //if(forward) out[1] = x[1];
    //else out[0] = x[0];
}
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX,  float *Y, int OFFY, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -333,7 +365,15 @@
__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] = min(ALPHA, max(-ALPHA, X[i*INCX]));
    if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX]));
}
__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) {
        if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0;
    }
}
__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
@@ -488,6 +528,13 @@
    check_error(cudaPeekAtLastError());
}
extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
    int size = w*h*c*batch;
    reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out);
    check_error(cudaPeekAtLastError());
}
extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
{
    mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
@@ -513,6 +560,12 @@
    check_error(cudaPeekAtLastError());
}
extern "C" void supp_ongpu(int N, float ALPHA, float * X, int INCX)
{
    supp_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
    check_error(cudaPeekAtLastError());
}
extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
{
    fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
@@ -594,6 +647,7 @@
}
__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -637,3 +691,37 @@
    mult_add_into_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, c);
    check_error(cudaPeekAtLastError());
}
__device__ void softmax_device(int n, float *input, float temp, float *output)
{
    int i;
    float sum = 0;
    float largest = -INFINITY;
    for(i = 0; i < n; ++i){
        int val = input[i];
        largest = (val>largest) ? val : largest;
    }
    for(i = 0; i < n; ++i){
        sum += exp(input[i]/temp-largest/temp);
    }
    sum = (sum != 0) ? largest/temp+log(sum) : largest-100;
    for(i = 0; i < n; ++i){
        output[i] = exp(input[i]/temp-sum);
    }
}
__global__ void softmax_kernel(int n, int offset, int batch, float *input, float temp, float *output)
{
    int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(b >= batch) return;
    softmax_device(n, input + b*offset, temp, output + b*offset);
}
extern "C" void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output)
{
    int inputs = n;
    int batch = groups;
    softmax_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, offset, batch, input, temp, output);
    check_error(cudaPeekAtLastError());
}