| | |
| | | #include "blas.h" |
| | | #include "math.h" |
| | | #include <assert.h> |
| | | |
| | | void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); |
| | | } |
| | | } |
| | | |
| | | void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) |
| | | { |
| | | int stride = w1/w2; |
| | | int sample = w2/w1; |
| | | assert(stride == h1/h2); |
| | | assert(sample == h2/h1); |
| | | if(stride < 1) stride = 1; |
| | | if(sample < 1) sample = 1; |
| | | int minw = (w1 < w2) ? w1 : w2; |
| | | int minh = (h1 < h2) ? h1 : h2; |
| | | int minc = (c1 < c2) ? c1 : c2; |
| | | |
| | | int i,j,k,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(k = 0; k < minc; ++k){ |
| | | for(j = 0; j < minh; ++j){ |
| | | for(i = 0; i < minw; ++i){ |
| | | int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); |
| | | int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); |
| | | out[out_index] += add[add_index]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) |
| | | { |
| | | float scale = 1./(batch * spatial); |
| | | int i,j,k; |
| | | for(i = 0; i < filters; ++i){ |
| | | mean[i] = 0; |
| | | for(j = 0; j < batch; ++j){ |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | mean[i] += x[index]; |
| | | } |
| | | } |
| | | mean[i] *= scale; |
| | | } |
| | | } |
| | | |
| | | void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| | | { |
| | | float scale = 1./(batch * spatial - 1); |
| | | int i,j,k; |
| | | for(i = 0; i < filters; ++i){ |
| | | variance[i] = 0; |
| | | for(j = 0; j < batch; ++j){ |
| | | for(k = 0; k < spatial; ++k){ |
| | | int index = j*filters*spatial + i*spatial + k; |
| | | variance[i] += pow((x[index] - mean[i]), 2); |
| | | } |
| | | } |
| | | variance[i] *= scale; |
| | | } |
| | | } |
| | | |
| | | void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) |
| | | { |
| | | int b, f, i; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(f = 0; f < filters; ++f){ |
| | | for(i = 0; i < spatial; ++i){ |
| | | int index = b*filters*spatial + f*spatial + i; |
| | | x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void const_cpu(int N, float ALPHA, float *X, int INCX) |
| | | { |
| | |
| | | for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; |
| | | } |
| | | |
| | | void fill_cpu(int N, float ALPHA, float *X, int INCX) |
| | | { |
| | | int i; |
| | | for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; |
| | | } |
| | | |
| | | void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) |
| | | { |
| | | int i; |
| | | for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; |
| | | } |
| | | |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | float abs_val = fabs(diff); |
| | | if(abs_val < 1) { |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | else { |
| | | error[i] = 2*abs_val - 1; |
| | | delta[i] = (diff < 0) ? -1 : 1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | } |
| | | |
| | | float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) |
| | | { |
| | | int i; |