| | |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes) |
| | | layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) |
| | | { |
| | | int i; |
| | | layer l = {0}; |
| | |
| | | l.bias_updates = calloc(n*2, sizeof(float)); |
| | | l.outputs = h*w*n*(classes + 4 + 1); |
| | | l.inputs = l.outputs; |
| | | l.truths = 90*(4 + 1); |
| | | l.max_boxes = max_boxes; |
| | | l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1); |
| | | l.delta = calloc(batch*l.outputs, sizeof(float)); |
| | | l.output = calloc(batch*l.outputs, sizeof(float)); |
| | | for(i = 0; i < total*2; ++i){ |
| | |
| | | } |
| | | |
| | | |
| | | void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat) |
| | | void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss) |
| | | { |
| | | int n; |
| | | if (delta[index]){ |
| | | delta[index + stride*class] = 1 - output[index + stride*class]; |
| | | if(avg_cat) *avg_cat += output[index + stride*class]; |
| | | delta[index + stride*class_id] = 1 - output[index + stride*class_id]; |
| | | if(avg_cat) *avg_cat += output[index + stride*class_id]; |
| | | return; |
| | | } |
| | | for(n = 0; n < classes; ++n){ |
| | | delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n]; |
| | | if(n == class && avg_cat) *avg_cat += output[index + stride*n]; |
| | | } |
| | | // Focal loss |
| | | if (focal_loss) { |
| | | // Focal Loss |
| | | float alpha = 0.5; // 0.25 or 0.5 |
| | | //float gamma = 2; // hardcoded in many places of the grad-formula |
| | | |
| | | int ti = index + stride*class_id; |
| | | float pt = output[ti] + 0.000000000000001F; |
| | | //float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 |
| | | float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss |
| | | |
| | | for (n = 0; n < classes; ++n) { |
| | | delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); |
| | | |
| | | delta[index + stride*n] *= alpha*grad; |
| | | |
| | | if (n == class_id) *avg_cat += output[index + stride*n]; |
| | | } |
| | | } |
| | | else { |
| | | // default |
| | | for (n = 0; n < classes; ++n) { |
| | | delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n]; |
| | | if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | static int entry_index(layer l, int batch, int location, int entry) |
| | |
| | | int class = state.truth[best_t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class = l.map[class]; |
| | | int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss); |
| | | box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); |
| | | delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); |
| | | } |
| | |
| | | int class = state.truth[t*(4 + 1) + b*l.truths + 4]; |
| | | if (l.map) class = l.map[class]; |
| | | int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); |
| | | delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss); |
| | | |
| | | ++count; |
| | | ++class_count; |